Abstract

Research Article

Impact of mandibular advancement device in quantitative electroencephalogram and sleep quality in mild to severe obstructive sleep apnea

Cuspineda-Bravo ER*, García- Menéndez M, Castro-Batista F, Barquín-García SM, Cadelo-Casado D, Rodríguez AJ and Sharkey KM

Published: 30 December, 2020 | Volume 4 - Issue 2 | Pages: 088-098

Sleep related breathing disorders (SRBD) are among seven well-established major categories of sleep disorders defined in the third edition of The International Classification of Sleep Disorders (ICSD-3), and Obstructive Sleep Apnea (OSA) is the most common SRBD [1,2]. Several studies have demonstrated that obstructive sleep apnea treatment increases the quality of life in OSA patients [3-8]. Indeed, excessive daytime sleepiness (EDS), cognitive impairment (e.g., deficits in attention-concentration, memory, dexterity, and creativity), traffic accidents, and deterioration of social activities are frequently reported in untreated patients [9-11]. Furthermore, an increase in cardiovascular morbidities and mortality (systemic hypertension, stroke, cardiac arrhythmias, pulmonary arterial hypertension, heart failure) [12], metabolic dysfunction, cerebrovascular ischemic events and chemical/structural central nervous system cellular injuries (gray/white matter) has been reported in OSA patients [13-17]. 

Continuous positive airway pressure (CPAP) therapy is considered the gold standard for treatment of moderate-severe OSA, nevertheless there is an increasing body of evidence supporting the usefulness of mandibular advancement devices (MADs) for improving quality of life and respiratory parameters even among patients with a high severity of OSA burden [5,10,18,19]. According to the standard of care of the American Academy of Sleep Medicine (AASM), MADs are indicated for mild to moderate OSA particularly in the context of CPAP intolerance or refusal, surgical contraindication, or the need for a short-term substitute therapy [9,15,20-22]. In Cuba, CPAP machines are not readily available; they are expensive and the majority of OSA patients cannot obtain this mode of therapy. Taking into account this problem, our hypothesis was based in the scientific evidences of MAD effectiveness, considering that low cost MADs could offer a reasonable alternative treatment for patients with OSA where CPAP technology are not handy. In this way our purpose was to assess the efficacy of one of the most simple, low cost, manufactured monoblock MAD models (SAS de Zúrich) in terms of improvements in cerebral function, sleep quality and drowsiness reports in a group of Cuban OSA patients with mild to severe disease. Outcome measures included changes in the brain electrical activity, sleep quality, and respiratory parameters, measured by EEG recording with qEEG analysis and polysomnographic studies correspondingly, which were recorded before and during treatment with an MAD, as well as subjective/objective improvements in daytime alertness. 

Read Full Article HTML DOI: 10.29328/journal.jnnd.1001041 Cite this Article Read Full Article PDF

References

  1. Sateia MJ. International classification of sleep disorders-third edition: highlights and modifications. Chest. 2014; 146: 1387-1394. PubMed: https://pubmed.ncbi.nlm.nih.gov/25367475/
  2. Judd BG, Sateia MJ. Classification of sleep disorders. 2015. www.uptodate.com
  3. Naismith SL, Winter VR, Hickie IB, Cistulli PA. Effect of oral appliance therapy on neurobehavioral functioning in obstructive sleep apnea: a randomized controlled trial. J Clin Sleep Med. 2005; 1: 374-380. PubMed: https://pubmed.ncbi.nlm.nih.gov/17564405/
  4. Blanco J, Zamarron C, Abeleira Pazos MT, Lamela C, Suarez Quintanilla D. Prospective evaluation of an oral appliance in the treatment of obstructive sleep apnea syndrome. Sleep Breath. 2005; 9: 20-25. PubMed: https://pubmed.ncbi.nlm.nih.gov/15785917/
  5. Phillips CL, Grunstein RR, Darendeliler MA, Mihailidou AS, Srinivasan VK, et al. Health outcomes of CPAP versus oral appliance treatment for obstructive sleep apnea: a randomized controlled trial. Am J Respir Crit Care Med. 2013; 187: 879-887. PubMed: https://pubmed.ncbi.nlm.nih.gov/23413266/
  6. Gagnadoux F, Fleury B, Vielle B, Pételle B, Meslier N, et al. Titrated mandibular advancement versus positive airway pressure for sleep apnoea. Eur Respir J. 2009; 34: 914-920. PubMed: https://pubmed.ncbi.nlm.nih.gov/19324954/
  7. Aarab G, Lobbezoo F, Heymans MW, Hamburger HL, Naeije M. Longterm follow-up of a randomized controlled trial of oral appliance therapy in obstructive sleep apnea. Respiration. 2011; 82: 162-168. PubMed: https://pubmed.ncbi.nlm.nih.gov/21454959/
  8. Gauthier L, Laberge L, Beaudry M, Laforte M, Rompre PH, et al. Mandibular advancement appliances remain effective in lowering respiratory disturbance index for 2.5-4.5 years. Sleep Med. 2011; 12: 844-849. PubMed: https://pubmed.ncbi.nlm.nih.gov/21925942/
  9. Sutherland K, Vanderveken OM, Tsuda H, Marklund M, Gagnadoux F, et al. Oral appliance treatment for obstructive sleep apnea: an update. J Clin Sleep Med. 2014; 10: 215-227. PubMed: https://pubmed.ncbi.nlm.nih.gov/24533007/
  10. Doff MHJ, Hoekema Am Wijkstra PJ, van der Hoven JH, Slater JJRH, et al. Oral appliance versus continuous positive airway pressure in obstructive sleep apnea syndrome: a 2-year follow-up. Sleep. 2013; 36: 1289-1296. PubMed: https://pubmed.ncbi.nlm.nih.gov/23997361/
  11. Tripathi A, Gupta A, Tripathi S, Dubey A. A novel use of complete denture prosthesis as mandibular advancement device in the treatment of obstructive sleep apnea in edentulous subjects. JDSM. 2014; 1: 115–119.
  12. Strohl KP. Overview of obstructive sleep apnea in adults. 2015. www.uptodate.com
  13. Xiromeritis AG, Hatziefthimiou AA, Hadjigeorgiou GM, Gourgoulianis KI, Anagnostopoulou DN, et al. Quantitative spectral analysis of vigilance EEG in patients with obstructive sleep apnoea syndrome: EEG mapping in OSAS patients. Sleep Breath. 2011; 15: 121–128. PubMed: https://pubmed.ncbi.nlm.nih.gov/20174876/
  14. Kamba M, Inoue Y, Higami S, Suto Y, Ogawa T, et al. Cerebral metabolic impairment in patients with obstructive sleep apnoea: an independent association of obstructive sleep apnoea with white matter change. J Neurol Neurosurg Psychiatry. 2001; 71: 334–339. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1737534/
  15. Kryger MH, Malhotra A. Management of obstructive sleep apnea in adults. 2015. www.uptodate.com
  16. Punjabi NM, Caffo BS, Goodwin JL, Gottlieb DJ, Newman AB, et al. Sleep-disordered breathing and mortality: a prospective cohort study. PLoS Med. 2009; 6: e1000132. PubMed: https://pubmed.ncbi.nlm.nih.gov/19688045/
  17. Marshall NS, Wong KK, Liu PY, Cullen SR, Knuiman MW, et al. Sleep apnea as an independent risk factor for all-cause mortality: the Busselton Health Study. Sleep. 2008; 31: 1079-1085. PubMed: https://pubmed.ncbi.nlm.nih.gov/18714779/
  18. Milano F, Mondini S, Billi MC, Gobbi R, Gracco A, et al. The impact of a multidisciplinary approach on response rate of mandibular advancing device therapy in patients with obstructive sleep apnoea syndrome. Acta Otorhinolaryngol Ital. 2013; 33: 337-342. PubMed: https://pubmed.ncbi.nlm.nih.gov/24227900/
  19. Gotsopoulos H, Chen C, Qian J, Cistulli PA. Oral Appliance Therapy Improves Symptoms in Obstructive Sleep Apnea. A Randomized, Controlled Trial. Am J Respir Crit Care Med. 2002; 166: 743–748. PubMed: https://pubmed.ncbi.nlm.nih.gov/12204875/
  20. Dal-Fabbro C, Chaves CM Jr., Bittencourt LRA, Tufik S. Clinical and polysomnographic assessment of the BRD Appliance in the treatment of Obstructive Sleep Apnea Syndrome. Dental Press J. Orthod. 2010; 15: 107-117.
  21. Liu Y, Lowe AA, Fleetham JA, Park YC. Cephalometric and physiologic predictors of the efficacy of an adjustable oral appliance for treating obstructive sleep apnea. Am J Orthod Dentofacial Orthop. 2001; 120: 639-647. PubMed: https://pubmed.ncbi.nlm.nih.gov/11742309/
  22. Bittencourt LRA. Diagnóstico e tratamento da Síndrome da Apnéia Obstrutiva do Sono (SAOS)-Guia Prático. 1ª ed. São Paulo: Médica Paulista. 2008.
  23. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med. 2012; 8: 597-619. PubMed: https://pubmed.ncbi.nlm.nih.gov/23066376/
  24. Kline LR. Clinical presentation and diagnosis of obstructive sleep apnea in adults. 2015. www.uptodate.com
  25. Epstein LJ, Kristo D, Strollo PJ Jr, Friedman N, Malhotra A, et al. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. Adult Obstructive Sleep Apnea Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med. 2009; 5: 263-276. PubMed: https://pubmed.ncbi.nlm.nih.gov/19960649/
  26. Lloberes P, Durán-Cantolla J, Martínez-García MA, Marín JM, Ferrer A, et al. Diagnosis and treatment of sleep apnea-hypopnea sindrome. Arch Bronconeumol. 2011; 47: 143-156. PubMed: https://pubmed.ncbi.nlm.nih.gov/21398016/
  27. Iber C, Ancoli-Israel S, Chesson A, Quan SF. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology, and Technical Specification, 1st ed, American Academy of Sleep Medicine, Westchester. 2007.
  28. Machado C, Cuspineda E, Valdés P, Virues T, Llopis F, et al. Assessing Acute Middle Cerebral Artery Ischemic Stroke by Quantitative Electric Tomography. Clin EEG Neurosci. 2004; 35: 116-124. PubMed: https://pubmed.ncbi.nlm.nih.gov/15259617/
  29. Morisson F, Décary A, Petit D, Lavigne G, Malo J, et al. Daytime Sleepiness and EEG Spectral Analysis in Apneic Patients Before and After Treatment With Continuous Positive Airway Pressure. Chest. 2001; 119: 45-52. PubMed: https://pubmed.ncbi.nlm.nih.gov/11157583/
  30. Morisson F, Lavigne G, Petit D, Nielsen T, Malo J, Montplaisir J. Spectral analysis of wakefulness and REM sleep EEG in patients with sleep apnoea síndrome. Eur Respir J. 1998; 11: 1135–1140. PubMed: https://pubmed.ncbi.nlm.nih.gov/9648968/
  31. Sheorajpanday RVA, Nagels G, Weeren JTM, De Deyn, PP. Quantitative EEG in ischemic stroke: Correlation with infarct volume and functional status in posterior circulation and lacunar syndromes. Clin Neurophysiol. 2011; 122: 884-890. https://pubmed.ncbi.nlm.nih.gov/20870455/
  32. Finnigan S, Wong A, Read S. Defining abnormal slow EEG activity in acute ischaemic stroke: Delta/alpha ratio as an optimal QEEG index. Clin Neurophysiol. 2016; 127: 1452-1459. PubMed: https://pubmed.ncbi.nlm.nih.gov/26251106/
  33. Petit D, Lorrain D, Gauthier S, Montplaisir J. Regional spectral analysis of the REM sleep EEG in mild to moderate Alzheimer’s disease. Neurobiol Aging. 1993; 14: 141–145.
  34. Millman RP, Kramer NR. Polysomnography in obstructive sleep apnea in adults. 2015. www.uptodate.com
  35. Strohl KP. Sleep related breathing disorders in adults: Definitions. 2015. www.uptodate.com
  36. Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991; 14: 540-545. PubMed: https://pubmed.ncbi.nlm.nih.gov/1798888/
  37. Macías E, de Carlos F, Cobo J, Díaz B. Aparotología intraoral en el tratamiento de la apnea-hipopnea obstructiva del sueño (SAHOS). RCOE. 2002; 7: 391-402.
  38. Sutherland K, Phillips CL, Cistulli PA. Efficacy versus effectiveness in the treatment of obstructive sleep apnea: CPAP and oral appliances. JDSM. 2015; 2: 175–181.
  39. Vanderveken OM, Dieltjens M, Wouters K, De Backer WA, Van de Heyning PH, et al. Objective measurement of compliance during oral appliance therapy for sleep-disordered breathing. Thorax. 2013; 68: 91-96. PubMed: https://pubmed.ncbi.nlm.nih.gov/22993169/
  40. Kribbs NB, Pack AI, Kline LR, Smith PL, Schwartz AR, et al. Objective measurement of patterns of nasal CPAP use by patients with obstructive sleep apnea. Am Rev Respir Dis. 1993; 147: 887-895. PubMed: https://pubmed.ncbi.nlm.nih.gov/8466125/
  41. Lee SD, Ju G, Kim JW, Yoon IY. Improvement of EEG slowing in OSAS after CPAP treatment. J Psychosom Res. 2012; 73: 126-131. PubMed: https://pubmed.ncbi.nlm.nih.gov/22789416/
  42. Wang G, Chen M, Bian J, He B. Electroencephalogram spectral power analysis of obstructive sleep apnea syndrome patients before and during continuous positive airway pressure therapy. Chin J Tuberculosis Respirat Dis. 2002; 25: 199: 203. PubMed: https://pubmed.ncbi.nlm.nih.gov/12133324/
  43. Grenèche J, Krieger J, Bertrand F, Ethardt C, Muzet A, et al. Effect of continuous positive airway pressure treatment on the subsequent EEG spectral power and sleepiness over sustained wakefulness in patients with obstructive sleep apnea-hypopnea syndrome. Clin Neurophysiol. 2011; 122: 958-965. PubMed: https://pubmed.ncbi.nlm.nih.gov/20889373/
  44. Puskás S, Kozák N, Sulina D, Csiba L, Magyar MT. Quantitative EEG in obstructive sleep apnea syndrome: a review of the literature. Rev Neurosci. 2017; 28: 265-270. PubMed: https://pubmed.ncbi.nlm.nih.gov/28099139/
  45. Montplaisir J, Bèdard MA, Richer F, Rouleau I. Neurobehavioral manifestations in obstructive sleep apnea syndrome before and after treatment with continuous positive airway pressure. Sleep. 1992; 15: 17–19. PubMed: https://pubmed.ncbi.nlm.nih.gov/1470802/
  46. Guilleminault C, Partinen M, Quera-Salva MA, Hayes B, Dement WC, et al. Determinants of daytime sleepiness in obstructive sleep apnea. Chest. 1988; 94: 32–37. PubMed: https://pubmed.ncbi.nlm.nih.gov/3383654/
  47. Mathieu A, Mazza S, Petit D, Décary A, Massicotte-Marquez J, et al. Does age worsen EEG slowing and attention deficits in obstructive sleep apnea syndrome? Clin Neurophysiol. 2007; 118: 1538–1544. PubMed: https://pubmed.ncbi.nlm.nih.gov/17507290/
  48. Sforza E, Grandin S, Jouny C, Rochat T, Ibanez V. Is waking electroencephalographic activity a predictor of daytime sleepiness in sleeprelated breathing disorders? Eur Respir J. 2002; 19: 645–652. PubMed: https://pubmed.ncbi.nlm.nih.gov/11998993/
  49. Grenèche J, Krieger J, Erhardt C, Bonnefond A, Eschenlauer A, et al. EEG spectral power and sleepiness during 24 h of sustained wakefulness in patients with obstructive sleep apnea syndrome. Clin Neurophysiol. 2008; 119: 418–428. PubMed: https://pubmed.ncbi.nlm.nih.gov/18077207/
  50. Finelli LA, Baumann H, Borbély AA, Achermann P. Dual electroencephalogram markers of human sleep homeostasis: correlation between theta activity in waking and slow-wave activity in sleep. Neuroscience. 2000; 101: 523–529. PubMed: https://pubmed.ncbi.nlm.nih.gov/11113301/
  51. D’Rozario AL, Kim JW, Wong KK, Bartlett DJ, Marshall NS, et al. A new EEG biomarker of neurobehavioural impairment and sleepiness in sleep apnea patients and controls during extended wakefulness. Clin Neurophysiol. 2013; 124: 1605-1614. PubMed: https://pubmed.ncbi.nlm.nih.gov/23562656/
  52. Wang D, Piper AJ, Yee BJ, Wong KK, Kim JW, et al. Hypercapnia is a key correlate of EEG activation and daytime sleepiness in hypercapnic sleep disordered breathing patients. J Clin Sleep Med. 2014; 10: 517-522. PubMed: https://pubmed.ncbi.nlm.nih.gov/24910553/
  53. Grenèche J, Saremi M, Erhardt C, Hoeft A, Eschenlauer A, et al. Severity of obstructive sleep apnoea/hypopnoea syndrome and subsequent waking EEG spectral power. Eur Respir J. 2008; 32: 705–709. PubMed: https://pubmed.ncbi.nlm.nih.gov/18757699/
  54. Hayakawa T, Terashima M, Kayukawa Y, Ohta T, Okada T. Changes in cerebral oxygenation and hemodynamics during obstructive sleep apneas. Chest. 1996; 109: 916–921. PubMed: https://pubmed.ncbi.nlm.nih.gov/8635370/
  55. Rosenzweig I, Glasser M, Polsek D, Leschziner GD, Williams SC, et al. Sleep apnoea and the brain: a complex relationship. Lancet Respir Med. 2015; 3: 404-414. PubMed: https://pubmed.ncbi.nlm.nih.gov/25887982/
  56. D’Rozario AL, Cross NE, Vakulin A, Bartlett DJ, Wong KKH, et al. Quantitative Electroencephalogram Measures in Adult Obstructive Sleep Apnea -Potential Biomarkers of Neurobehavioural Functioning. Sleep Med Rev. 2017; 36: 29-42.
  57. Beebe DW, Gozal D. Obstructive sleep apnea and the prefrontal cortex: Towards a comprehensive model linking nocturnal upper airway obstruction to daytime cognitive and behavioral deficits. J Sleep Res. 2002; 11: 1-16. PubMed: https://pubmed.ncbi.nlm.nih.gov/11869421/
  58. Kraaier V, Van Huffelen AC, Wieneke GH. Quantitative EEG changes due to hypobaric hypoxia in normal subjects. Electroencephalogr Clin Neurophysiol. 1988; 69: 303–312. PubMed: https://pubmed.ncbi.nlm.nih.gov/2450729/
  59. Ozaki H, Watanabe S, Suzuki H. Topographic EEG changes due to hypobaric hypoxia at simulated high altitude. Electroencephalogr Clin Neurophysiol. 1995; 94: 349–356. PubMed: https://pubmed.ncbi.nlm.nih.gov/7774521/
  60. Wang D, Yee BJ, Wong KK, Kim JW, Dijk DJ, et al. Comparing the effect of hypercapnia and hypoxia on the electroencephalogram during wakefulness. Clin Neurophysiol. 2015; 126: 103-109. PubMed: https://pubmed.ncbi.nlm.nih.gov/24875233/
  61. Wang D, Thomas RJ, Yee BJ, Grunstein RR. Hypercapnia Is More Important Than Hypoxia in the Neuro- Outcomes of Sleep-Disordered Breathing. J Appl Physiol. 2016; 120: 1484–1486. PubMed: https://pubmed.ncbi.nlm.nih.gov/26869712/
  62. Harper RM, Kumar R, Ogren JA, Macey PM. Sleep-disordered breathing: effects on brain structure and function. Respir Physiol Neurobiol. 2013; 188: 383-391. PubMed: https://pubmed.ncbi.nlm.nih.gov/23643610/
  63. Macey PM, Kumar R, Woo MA, Valladares EM, Yan-Go FL, et al. Brain structural changes in obstructive sleep apnea. Sleep. 2008; 31: 967-977. PubMed: https://pubmed.ncbi.nlm.nih.gov/18652092/
  64. Alchanatis M, Deligiorgis N, Zias N, Amfilochiou A, Gotsis E, et al. Frontal brain lobe impairment in obstructive sleep apnoea: a proton MR spectroscopy study. Eur Respir J. 2004; 24: 980–986. PubMed: https://pubmed.ncbi.nlm.nih.gov/15572542/
  65. Yaouhi K, Bertran F, Clochon P, Mezenge F, Denise P, et al. A combined neuropsychological and brain imaging study of obstructive sleep apnea. J Sleep Res. 2009; 18: 36–48. PubMed: https://pubmed.ncbi.nlm.nih.gov/19250174/
  66. Canessa N, Castronovo V, Cappa SF, Aloia MS, Marelli S, et al. Obstructive sleep apnea: brain structural changes and neurocognitive function before and after treatment. Am J Respir Crit Care Med. 2011; 183: 1419–1426. PubMed: https://pubmed.ncbi.nlm.nih.gov/21037021/
  67. Castronovo V, Canessa N, Strambi LF, Aloia MS, Consonni M, et al. Brain activation changes before and after PAP treatment in obstructive sleep apnea. Sleep. 2009; 32: 1161–1172. PubMed: https://pubmed.ncbi.nlm.nih.gov/19750921/
  68. Aarab G, Lobbezoo F, Hamburger HL, Naeije M. Oral appliance therapy versus nasal continuous positive airway pressure in obstructive sleep apnea: a randomized, placebo-controlled trial. Respiration. 2011; 81: 411–419. PubMed: https://pubmed.ncbi.nlm.nih.gov/20962502/
  69. Anandam A, Patil M, Akinnusi M, Jaoude P, El-Solh AA. Cardiovascular mortality in obstructive sleep apnea treated with continuous positive airway pressure or oral appliance: an observational study. Respirology. 2013; 18: 1184-1190. PubMed: https://pubmed.ncbi.nlm.nih.gov/23731062/
  70. Gotsopoulos H, Kelly JJ, Cistulli PA. Oral appliance therapy reduces blood pressure in obstructive sleep apnea: a randomized, controlled trial. Sleep. 2004; 27: 934-941. PubMed: https://pubmed.ncbi.nlm.nih.gov/15453552/
  71. Otsuka R, Ribeiro de Almeida F, Lowe AA, Linden W, Ryan F. The effect of oral appliance therapy on blood pressure in patients with obstructive sleep apnea. Sleep Breath. 2006; 10: 29-36. PubMed: https://pubmed.ncbi.nlm.nih.gov/16391938/
  72. Itzhaki S, Dorchin H, Clark G, Lavie L, Lavie P, et al. The effects of 1year treatment with a Herbst mandibular advancement splint on obstructive sleep apnea, oxidative stress, and endothelial function. Chest. 2007; 131: 740-749. PubMed: https://pubmed.ncbi.nlm.nih.gov/17356088/
  73. Trzepizur W, Gagnadoux F, Abraham P, Rousseau P, Meslier N, et al. Microvascular endothelial function in obstructive sleep apnea: Impact of continuous positive airway pressure and mandibular advancement. Sleep Med. 2009; 10: 746-752. PubMed: https://pubmed.ncbi.nlm.nih.gov/19147401/
  74. White DP, Shafazand S. Mandibular advancement device vs CPAP in the treatment of obstructive sleep apnea: are they equally effective in short term health outcomes? J Clin Sleep Med. 2013; 9: 971-972. PubMed: https://pubmed.ncbi.nlm.nih.gov/23997711/
  75. Lee CH, Mo JH, Choi IJ, Lee HJ, Seo BS, et al. The Mandibular Advancement Device and Patient Selection in the Treatment of Obstructive Sleep Apnea. Arch Otolaryngol Head Neck Surg. 2009; 135: 439-444. PubMed: https://pubmed.ncbi.nlm.nih.gov/19451462/
  76. Almeida FR, Bansback N. Long-Term Effectiveness of Oral Appliance versus CPAP Therapy and the Emerging Importance of Understanding Patient Preferences. Sleep. 2013: 36: 1271-1272. PubMed: https://pubmed.ncbi.nlm.nih.gov/23997356/
  77. Qaseem A, Holty JE, Owens DK, Dallas P, Starkey M, et al. Management of Obstructive Sleep Apnea in Adults: A Clinical Practice Guideline From the American College of Physicians. Ann Intern Med. 2013; 159: 471-483. PubMed: https://pubmed.ncbi.nlm.nih.gov/24061345/
  78. Strohl KP, Brown DB, Collop N, George C, Grunstein R, et al. An official American Thoracic Society Clinical Practice Guideline: sleep apnea, sleepiness, and driving risk in noncommercial drivers. An update of a 1994 Statement. Am J Respir Crit Care Med. 2013; 187: 1259-1266. PubMed: https://pubmed.ncbi.nlm.nih.gov/23725615/
  79. Weaver TE. Don’t start celebrating—CPAP adherence remains a problem. J Clin Sleep Med. 2013; 9: 551-552. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659374/
  80. Clark GT, Nakand M. Dental appliances for the treatment of obstructive sleep apnea. J Am Dent Ass. 1989; 118: 611-619.
  81. George PT. Treatment of snoring and obstructive sleep apnea with a dental device. Gen Dent. 1993; 41: 294-298. PubMed: https://pubmed.ncbi.nlm.nih.gov/8262341/
  82. Mehta A, Qian J, Petocz P, Darendeliler MA, Cistulli PA. A randomized, controlled study of a mandibular advancement splint for obstructive sleep apnea. Am J Respir Crit Care Med. 2001; 163: 1457-1461. PubMed: https://pubmed.ncbi.nlm.nih.gov/11371418/

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Figure 1

Figure 4

Figure 1

Figure 5

Figure 1

Figure 6

Figure 1

Figure 7

Similar Articles

Recently Viewed

  • Renal neoplasms and computed tomography
    Hajra Idrees, MBBS*, Raza Zarrar, MBBS, Bilal Mujtaba and MD Hajra Idrees, MBBS*,Raza Zarrar, MBBS, MD,Bilal Mujtaba, MD. Renal neoplasms and computed tomography. J Radiol Oncol. 2022: doi: 10.29328/journal.jro.1001043; 6: 022-026
  • Clinical relevance linked to echocardiography diagnosis in Bland, White and Garland syndrome
    Mariela Céspedes Almira*, Adel Eladio González Morejón, Giselle Serrano Ricardo, Mariela Céspedes Almira*, Adel Eladio González Morejón, Giselle Serrano Ricardo and Tania Rosa González Rodríguez Mariela Céspedes Almira*,Adel Eladio González Morejón,Giselle Serrano Ricardo,Tania Rosa González Rodríguez,Mariela Céspedes Almira*,Adel Eladio González Morejón,Giselle Serrano Ricardo,Tania Rosa González Rodríguez. Clinical relevance linked to echocardiography diagnosis in Bland, White and Garland syndrome. J Cardiol Cardiovasc Med. 2020: doi: 10.29328/journal.jccm.1001086; 5: 051-055
  • Drawings as learning aid for the human anatomy students’ based evaluation
    Faaiz Y Alhamdani* and Hatem A Hatem Faaiz Y Alhamdani*,Hatem A Hatem. Drawings as learning aid for the human anatomy students’ based evaluation. J Oral Health Craniofac Sci. 2017: doi: 10.29328/journal.johcs.1001017; 2: 090-095
  • Promising Future in the Detection of Oral Cancer by Using Advance Screening Technology
    Mohamed Yasser Kharma*, Mohamed Sadek Alalwani and Manal Fouad Amer Mohamed Yasser Kharma*,Mohamed Sadek Alalwani,Manal Fouad Amer. Promising Future in the Detection of Oral Cancer by Using Advance Screening Technology . J Oral Health Craniofac Sci. 2016: doi: 10.29328/journal.johcs.1001003; 1: 022-33
  • Menstrual cycle effects on sleep
    Gupta PD* Gupta PD*. Menstrual cycle effects on sleep. Clin J Obstet Gynecol. 2022: doi: 10.29328/journal.cjog.1001105; 5: 042-043

Read More

Most Viewed

Read More