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Introduction
Human being need to rest on a daily basis. Lack of rest 

leads to severe physical and psychological symptoms which 
can lead to behavioral inactivity. Pathobiology and molecular 
mechanisms involved in sleep is quite complex and least 
understood phenomenon according to many researchers. 
Sleep studies and researches has gained a lot of momentum 
in recent years. The main reason is role of genetic background 
which can disrupt sleep and thereby causing several types of 
sleep disorders reported in literature till date [1].

Variation of sleep phenotypes, their intraindividual 
stability as well as familial aggregation of certain sleep related 
disorders has drawn a lot of attention recently. Human 
sleep EEG showed evidence that it is dependent on genetic 
background of the individual in question which led many 
to think that human EEG is highly heritable trait in human 
beings [2,3]. Heritability of sleep traits is controlled by genetic 
polymorphism and regulation [4-8]. Relation of sleep with 
age, gender, environment still needs to be elicited in ongoing 
studies. Molecular processes and function that produce the 
need to sleep both remain understudied [9,10].

Major advances in the recent years comprise the 
identiϐication of brain structures, neurotransmitters and 
several other molecules regulating sleep and common 
understanding among clinicians and researchers that it is quite 
a common treatable phenomenon which when unaddressed 
can cause severe psychosomatic and cognitive symptoms 
that can affect quality of life in individuals irrespective of age, 
gender and other confounding factors [11-14].

Previously twin studies has reported higher concordance 
of sleep habits, e.g. sleep duration and quality in monozygotic 
(MZ) than in dizygotic (DZ) twins, even when exposed 
to different environmental situation with an estimated 
heritability of 30%-44% [15-19]. Pittsburgh Sleep Quality 
Index (PSQI) is usually used to investigate subjective sleep 
quality [20]. Zung, et al. performed the ϐirst polysomnogram in 
MZ showing temporal sleep patterns in terms of sleep stages 
[21]. Genetic background contributes heavily on numerous 
sleep traits like sleep duration, quality, onset latency, efϐiciency 
and wake after sleep onset, REM/NREM sleep characteristics, 
stage changes, diurnal preference, behavioral reaction due to 
sleep loss, insomnia and several sleep related disorders like 
restless leg syndrome [22-25].

NREM sleep is found consistently to be under strong genetic 
control in humans and animal models as compared to REM 
sleep [26-28]. REM sleep amount was found to be signiϐicantly 
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correlated in MZ twins, 95% heritable in some studies, with 
conϐlicting results from other studies [21,23,25,29], sleep 
onset latency in MZ only [29], sleep efϐiciency and wake after 
sleep onset [18,19,24,29,30], stage changes and frequency 
proϐiles also in MZ [4,31], diurnal preference [19,32,33], 
neurobehavioral reaction to sleep loss [24], disorders like 
insomnia [19,34,35], RLS [36,37], sleep talking, bruxism, 
enuresis [38-40].

In terms of familial and linkage studies certain sleep- 
related diseases show high familial risk and speciϐic modes of 
transmission, loci and certain molecules.

Familial Advanced Sleep Phase Syndrome (FASPS)

It shows an AD pattern of inheritance, characterized 
by persistent early evening sleep onset and early morning 
awakening. Although the complaint of awakening earlier than 
desired is relatively common, particularly in older adults, 
extreme advance of sleep phase is rare. hPer2, CK1ɛ, and CK1δ 
has been associated with this syndrome complex [41,42]. The 
circadian rhythms of sleep propensity and melatonin secretion 
are regulated by a central circadian clock, most importantly the 
suprachiasmatic nucleus of the hypothalamus along with body 
core temperature. Reid, et al. used measures of sleep onset and 
offset, dim light melatonin onset, Horne-Ostberg morningness 
- eveningness questionnaire and clinical interviews in a 32 
member family with ASPS [43].

Autosomal semi-dominant mutations in rodents with fast 
or slow biological clocks (i.e. short or long endogenous period 
lengths; tau) are associated with phase-advanced or delayed 
sleep-wake rhythms, respectively [44]. A known missense 
mutation (bp2106 A/G) in hPer2 was checked in 2 Japanese 
families. None of the tested subjects possessed the missense 
mutation and there was no signiϐicant linkage between affected 
subjects with hPer2 region by 2-point mapping and by direct 
sequencing of 23 exons of hPer2, supporting the possibility of 
genetic heterogeneity [45]. Phosphorylation of PER proteins 
regulates their stability as well as their subcellular localization. 
Vanselow, et al. have identiϐied 21 phosphorylated residues 
of mPER2 including Ser 659, which is mutated in patients 
suffering from FASPS. Phosphorylation at Ser 659 results 
in nuclear retention and stabilization of mPER2, whereas 
phosphorylation at other sites leads to mPER2 degradation in 
oscillating ϐibroblasts [46].

Restless Legs Syndrome (RLS)

Diagnostic criteria of RLS is quite simple [47]. Mode of 
inheritance can be AD, AR and few cases are not clear. AD type 
comprises of 5 types of RLS (1-5), sequenced to long and short 
arm of chromosome [48-52,53-58]. Liebetanz, et al. showed 
ϐine-mapping of an AD locus in a family of Bavarian origin with 
intrafamilial heterogeneity with RLS3 [59]. Desautels, et al. 
examined 276 individuals from 19 families using a selection 
of markers spanning the identiϐied candidate interval on 

chromosome 12q. Results also suggested the presence of 
heterogeneity in RLS as linkage was formally excluded 
across the region in 6 pedigrees. Signiϐicantly higher periodic 
leg movements during sleep indices were observed for all 
probands with RLS from linked families showing AR pattern 
of inheritance of RLS1 [60], unclear inheritance pattern in 
RLS2(12q,14q) and related to several other molecules like 
MEIS1. 

Sarayloo, et al. used human cell lines to conduct a RNA-
Seq study. MEIS1, acts as a regulator of the expression of 
many other genes and some of the genes affected by its 
expression level are linked to pathways previously reported 
to be associated with RLS. Cells where MEIS1 expression was 
either increased or prevented, bone mineral absorption was 
the principal dysregulated pathway. The mineral absorption 
main pathway genes, HMOX1 and VDR are involved in iron 
metabolism and response to vitamin D, respectively. Same 
enrichment of the mineral absorption pathway in postmortem 
brain tissues of RLS patients showed a reduced expression of 
MEIS1. Expression of genes encoding metallothioneins (MTs) 
was observed to be dysregulated across the RNA-Seq datasets 
generated from both human cells and tissues in their study. 
MTs are highly relevant to RLS as they bind intracellular 
metals, protect against oxidative stress and interact with 
ferritins which manage iron level in the central nervous 
system. While MTs have been implicated in the pathogenesis 
of neurodegenerative diseases such as Parkinson’s disease 
this was the ϐirst study showed the molecular association with 
RLS [61,62]. 

RLS-linked genetic signal has been mapped to an intronic 
regulatory element within MEIS1. This element plays a role 
in the ganglionic eminences of the developing forebrain, 
with the RLS risk allele related to a reduced activation of the 
enhancer part. Ganglionic eminences play an important role 
in the development of genetic susceptibility to RLS. Some 
rare variants within MEIS1 alone are sufϐicient to suppress 
MEIS1 function in neural development, providing further 
evidence of the importance of neurodevelopmental processes 
in the pathological mechanism of MEIS1 in RLS. Salminen, et 
al. 2019 reported heterozygous MEIS1 inactivation in mice 
causing hyperactivity at the onset of the inactive period, 
consistent with human RLS. These mice related animal study 
also revealed an effect of MEIS1 on the dopaminergic system 
at both the spinal and supraspinal level thereby suggesting 
complex pathomechanistic process [63], BTBD9, MAP2K5, 
LBOXCOR1, DMT1 [64-68]. Recently Tilch, et al. has updated 
the genetic proϐile of RLS by mutation load analysis previously 
not reported [69]. TOX3 gene variant could be associated with 
painful restless legs [70].

Primary Nocturnal Enuresis (PNE)

Nocturnal enuresis, or nightly bedwetting in children more 
than seven years of age affects about 10% of seven-year-old 
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to chromosome 22 [80]. The association between 5HTR2A 
gene polymorphisms and polysymptomatic NE was reported 
by Wei, et al. suggesting that genetic variations at 5HTR2A may 
inϐluence NE treatment response [81].

Genetic variations affecting sleep phenotypes include 
several genes, modiϐications like SNP, missense mutation, 
VNTR, insertion/deletion variant, SNPs in promoter and coding 
region, missense mutation in signal peptide, SNP in 5′UTR.
Speciϐic genes are described below:

CLOCK: A transcription-translation feedback loop serves 
as the basic mechanism for the clock machinery in the 
suprachiasmatic nucleus (SCN) to control circadian rhythmic 
city. The PER and CRY proteins, in turn, act as negative 
regulators of CLOCK/BMAL1 activity by forming a repressor 
complex with casein kinase (CK) 1ε (encoded by the CSNK1E 
gene) and CK1δ (CSNK1D) [52,59]. Besides their function in 
circadian rhythmicity, clock genes have also been found to 
inϐluence sleep variables. Supporting evidence comes from 
animal models showing that knockout of BMAL1 and NPAS2 
and double knockout of Cry1 and Cry2 lead to abnormalities 
in sleep homeostasis in animal model [82-84]. In 1998, 
Katzenberg, found a T3111C polymorphism in the 3′ UTR of 
CLOCK associated with diurnal preferences, in that carriers 
of the C-allele are more often evening- type. In a Japanese 
sample, the highest eveningness was likewise found in C/C 
homozygous subjects, along with signiϐicantly delayed sleep 
onset, shorter sleep duration, and higher daytime sleepiness 
compared with either heterozygous or homozygous T- allele 
carriers [85-93].

SLC6A3(DAT): In humans, a VNTR polymorphism in the 
3′ UTR of the DAT encoding gene SLC6A3 leads to less DAT 
in the striatum in individuals homozygous for the long 10- 
repeat allele as compared with carriers of the 9 repeat allele. 
According to the available animal data, 10/10 carriers are 
more sensitive to caffeine generally, as well as to its effect 
on reducing SWS rebound after sleep deprivation, which was 
found more pronounced in 10- repeat homozygotes [94-98].

MAOA: Monoamine oxidase (MAO) A and B are encoded on 
the X- chromosome and catalyze the degradation of serotonin 
and melatonin. Females carrying an allele conferring higher 
activity due to a variable number tandem repeat (VNTR) 
polymorphism in the MAO- A promoter region are at higher 
risk of developing RLS. The less active allele seems to confer 
susceptibility to depression and poor sleep quality. Koch, et 
al. proposed an association of a VNTR in intron 1 of the MAOA 
gene and a dinucleotide repeat in intron 2 of the MAOB gene 
with the occurrence of narcolepsy with cataplexy. MAO- A and 
- B inhibitors are capable of reducing symptoms of narcolepsy 
such as cataplexy and abnormal REM sleep [99-102,103-106].

ADA: Adenosinergic neurotransmission is suspected to 
play a major role in the regulation of sleep and wakefulness 
and their homeostasis in mice and humans. Retey, et al. found 

children, with a wide range of frequencies between populations. 
From the age of seven there is a spontaneous cure rate of 15% 
per year, such that few remain affected even after the age of 
16 years. Two types of nocturnal enuresis exists: type I (PEN1, 
primary) with at least three nightly episodes in children above 
seven years, where the child has always had the disorder and 
type II (secondary) where the child has been dry for at least 
six months, but enuresis has recurred. Reports from a danish 
family population, in which 17 families were examined, eleven 
of these family had type I nocturnal enuresis (PEN1) that 
appeared to follow an AD mode of inheritance with penetrance 
almost above 90%. Strong evidence of linkage with the DNA 
polymorphisms D13S291 and D13S263 was found. Multipoint 
analysis indicated that these markers ϐlank the disease locus at 
chromosome 13q13-q14.3 as reported by Eiberg, et al. [71-73]. 
Arnell, et al. found a region around D12S80 on chromosome 
12q that showed a positive two point lod score in six of the 
families among sixteen of them. Ratio of males to females was 
3:1, indicating sex linked or sex inϐluenced factors [74].

Linkage analysis revealed 6 families with dominant primary 
nocturnal enuresis around the aquaporin-2 (AQP2) water 
channel locus. PNE is ameliorated by desmopressin, AQP2 
expression is increased by desmopressin and AQP2 is essential 
for concentrating urine. Deen, et al. in their study reported 
no mutation in the AQP2 coding, the AQP2 gene is excluded 
as a candidate for autosomal dominant PNE in these families 
in which the disease co-segregates with chromosome 12q 
[75]. Eiberg, et al. in their research used total genome scan 
and multipoint analysis and mapped PNE to chromosome 22 
between the markers D22S446 and D22S343 with a multipoint 
lod score of 4.51.GNAZ has a transducin function in eye and 
brain and is an obvious candidate gene on chromosome 22q11 
for PNE [76].

Brain-derived neurotrophic factor (BDNF) and nerve growth 
factor (NGF) are neurotrophins which affects maturation 
of the nervous system. Delayed neuronal maturation has 
been suggested as a pathogenetic mechanism in primary 
monosymptomatic nocturnal enuresis (PMNE). Neurotrophin 
gene polymorphisms did not signiϐicantly contribute to the 
development of PMNE, but urine levels of neurotrophin gene 
products were higher in PMNE [77]. Dopamine D4 receptor 
(DRD4) promoter (-616; rs747302) has been associated with 
primary nocturnal enuresis (PNE). Yu, et al. reported C-allele 
carriers were associated with a higher AS (Arousal from Sleep), 
decreased GMV (Grey Matter Volume) and FCD (Functional 
Connectivity Density) in the pregenual anterior cingulate cortex. 
Children with PNE carrying the C-allele exhibit decreased GMV 
and FCD in the thalamus however, controls who participated 
in the studies carrying the C allele exhibit increased FCD in the 
posterior cingulate cortex. Thus this genetic variation of the 
DRD4 locus may give a genetic susceptibility of the DRD4 -616 C 
allele to PNE [78,79]. Fatouh, et al. reported PNE can be in part 
linked to reversed ADH circadian rhythm which may be linked 
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an increase in slow wave sleep (SWS) during an undisturbed 
night in ADA* 1–2 carriers resembling the effects of one night 
of sleep deprivation [107]. This was further accompanied by 
higher delta power in NREM sleep, which is a marker of sleep 
need [108-112].

BDNF: Evidence in the recent past suggested increased 
sleep slow waves after sleep deprivation is a reϐlection in plastic 
synaptic processes, and that brain-derived neurotrophic factor 
(BDNF) is causally involved in their homeostatic regulation. 
The functional Val66Met polymorphism of the gene encoding 
pro-BDNF causes impaired activity-dependent secretion of 
mature BDNF protein. Bachmann, et al. reported about the 
contribution of BDNF to the regulation of sleep slow wave 
oscillations and variation in neuronal plasticity modulates 
NREM sleep intensity in humans [113-124].

PRNP: FFI (Fatal Familial Insomnia) is characterized by 
disrupted sleep, i.e., loss of sleep spindles and slow wave sleep, 
and impaired sleep stage organization, as well as progressive 
reduction of sleep time. Reduced metabolism in thalamic and 
limbic regions and degeneration of thalamic nuclei has been 
identiϐied. A missense mutation, a G- to -A transition at codon 
178, leads to substitution of aspartate for asparagine. Two 
Italian affected kindred revealed an underlying point mutation 
in the prion protein (PrP) gene (PRNP) on chromosome 20. 
Creutzfeldt– Jakob disease (CJD) is characterized by the same 
mutation and accumulation of protease- resistant prion protein 
plaques, but differs from FFI regarding a polymorphism at 
codon 129, which is common and leads to either incorporation 
of a methionine or valine and further to protein isoforms 
differing in size and glycosylation pattern. While in FFI- affected 
individuals the mutated allele encodes for methionine, those 
with CJD express valine on the mutated PRNP allele [125-130].

ADORA: Common genetic variation of ADORA2A is an 
important determinant of psychomotor vigilance in rested and 
sleep-deprived state. It also modulates individual responses 
to caffeine after sleep deprivation. Role for adenosine A (2A) 
receptors in the effects of prolonged wakefulness on vigilant 
attention and the sleep EEG [131]. Role of adenosine A2A 
receptors for sleep in humans, suggest that a common variation 
in ADORA2A contributes to subjective and objective responses 
to caffeine on sleep [132].

COMT: A sexual dimorphism and a strong effect of COMT 
genotype on severity of narcolepsy exists. Women narcoleptics 
with high COMT activity fell asleep twice as fast as those 
with low COMT activity during the multiple sleep latency 
test (MSLT) while the opposite was true for men. COMT 
genotype also strongly affected the presence of sleep paralysis 
and the number of REM sleep onsets during the MSLT [99]. 
Dopaminergic mechanisms contribute to impaired waking 
functions after sleep loss [133]. The Val158Met polymorphism 
of COMT modulates the effects of modaϐinil on the NREM 
sleep EEG in recovery sleep after prolonged wakefulness. The 

sleep EEG changes induced by modaϐinil markedly differ from 
those of caffeine, showing that pharmacological interference 
with dopaminergic and adenosinergic neurotransmission 
during sleep deprivation differently affects sleep homeostasis 
[134,135].

TNFA: Three SNP of the TNFA promoter and one adjacent 
microsatellite was investigated by Wieczorek, et al. These 
results point towards an etiological inϐluence of TNFA alleles 
in narcolepsy and support previous ϐindings suggesting 
genetic heterogeneity and differences in pathophysiological 
characteristics of HLA-DR2 positive and negative narcolepsy 
[136]. TNF-alpha with 857T was associated with narcolepsy 
independent of the strong association of DRB1*1501 [137].

PER3: Polymorphism in the PER3 promoter associates with 
diurnal preference and delayed sleep phase disorder [138-140]. 
PER3 VNTR polymorphism was not associated with individual 
differences in neurobehavioral responses to PSD (Partial Sleep 
Deprivation), although it was related to one marker of sleep 
homoeostatic response during PSD. PER3 does not contribute 
to the neurobehavioral effects of chronic sleep loss [141]. 
PER3 polymorphism differentially inϐluences the effects of 
sleep deprivation on executive and non-executive function 
in the early morning. These effects appear to be mediated 
through homeostatic sleep pressure [142,143]. Individual 
phase differences in PER3 expression during a constant 
routine correlate with sleep timing during entrainment. PER3 
expression in leukocytes represents a useful molecular marker 
of the circadian processes governing sleep-wake timing [93].

TNFR2: In a Japanese case control study it was found 
TNFR2 is likely associated with the susceptibility to narcolepsy. 
Relationship of TNFR2 and TNF-alpha with the susceptibility 
to narcolepsy indicates the possibility that an additive effect 
on the susceptibility to the disorder lies between TNFR2-196R 
and TNF-alpha (-857T) alleles [144]. Chen, et al. reported 
increased TNF-α level was associated with narcolepsy in our 
patients, and that chronic inϐlammation due to various factors 
might have led to the increased TNF-α levels found in their 
patients [145].

HCRT: Hypocretin loci do not contribute signiϐicantly to 
genetic predisposition, however cases of human narcolepsy 
are associated with a deϐicient hypocretin system [146]. 
Hypocretin-speciϐic CD8+ T cells was detected in the blood 
and cerebrospinal ϐluid of several patients in a study with 
narcolepsy [147]. Selective hypocretin receptor 2 agonist 
(YNT-185) has been shown to ameliorate symptoms of 
narcolepsy in murine models [148].

GABRA (GABA A receptors): A missense mutation 
was found in the gene of the beta3 subunit nucleotide 
polymorphism in a patient with chronic insomnia [149]. 
Pharmacogenetic experiments are currently leading to an 
understanding of the circuit mechanisms in the hypothalamus 
by which zolpidem and similar compounds induce sleep at 
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α2βγ2-type GABAA receptors [150]. GABA receptors undergo 
dynamic and differential changes in the wake-active Orx 
neurons and the sleep-active MCH neurons as a function of 
and homeostatic adjustment to their preceding activity and 
sleep-wake state [151].

HTR2A (5-HT2A receptor): Serotonin (5-HT) 5-HT2A 
receptor (5-HT2AR) and 5-HT2C receptor (5-HT2CR) in the 
central nervous system are implicated in a range of normal 
behaviors (e.g., appetite, sleep) [152]. Job stress and 5-HTR2A 
receptor gene polymorphisms are associated with sleep quality 
in physicians. Subjects with high job stress level or/and the 
-1438G/A GG genotype were more likely to report poor sleep 
quality, and furthermore, their combination effect on sleep 
quality was higher than their independent effects [153]. 
Polymorphisms of 5-HT 2A receptor gene and obstructive 
sleep apnea was shown in metanalysis [154,155]. Joëlle Adrien 
in one animal study showed the role of serotonin transmission 
in mice model [106].

SLC6A4 (5-HTT): Tryptophan improved objective sleep 
efϐiciency and objective wake after sleep onset irrespective of 
allelic variation in one study [156]. Tryptophan augmentation 
may be a valuable treatment strategy for sleep impairments 
related to genetic deϐiciencies in 5-HT functioning. A metanalysis 
demonstrated that 5-HTR-1438 “A” and 5-HTTVNTR “10” 
alleles were signiϐicantly associated with OSAS. The “S” allele of 
5-HTTLPR and the “GG” genotype of LEPR conferred protection 
against OSAS in line with some other researches [157-160].

Discussion
Sleep as we see is the most complex biological process 

in human beings. In this article genes associated with sleep 
is being reviewed in details.MZ are more affected than DZ 
as evident from the twin studies. Disorders associated with 
sleep genetics include insomnia, breathing disturbances 
during sleep (i.e., sleep apnea), movement disorders during 
sleep (i.e., Restless leg syndrome, Periodic leg movements) 
and sleep-wake state dissociation disorders (i.e., narcolepsy, 
Rapid Eye Movement (REM) sleep Behavior Disorder, sleep 
walking).

Familial and linkage studies also hinted at several diseases 
like FASPS, RLS, and PNE. Pattern of inheritance can be AD/AR 
or of unclear origin. Several involved molecules and loci are 
reported among studies. Genes, modiϐication at cellular level 
like SNP, VNTR, and missense mutations are also reported in 
literature and every gene modiϐication can lead to different 
phenotypic trait related to sleep. Neurotransmitters like 
adenosine, dopamine, serotonin, GABA are involved along with 
individual effect and complex interaction among them related 
to neuroanatomical circuit. Molecules like MAO, COMT, TNF, 
BDNF, Prion protein, orexin, hypocretin are involved in sleep 
disorders associated with gene interaction. Circadian CLOCK 
genes are also reviewed in this article.

Conclusion
Genetics of sleep are still studied because it is considered as 

a very complex mechanism in humans. Sleep phenotypes and 
sleep disorders are controlled by individualised genetic factors. 
Mechanism of sleep function and pathophysiology behind it is 
controlled from molecular to organismic behavioral level. Sound 
sleep is important for proper functioning of individual. Improper 
sleep can lead to unnecessary stress and can be harbinger of 
diseases like hypertension, diabetes mellitus etc. and decreased 
neurocognitive status. Various genes are responsible for sleep 
disorders however if any single gene involved is not known yet. 
Sleep studies are quite complicated and even PSG may not be 
able to pick the diagnosis at initial stage. Genetic sequencing 
may be of great help in subset of population when diagnosis 
is not clear. Further studies are required in form of basic and 
translational research which will involve linking of various 
disorder phenotypes to normal mechanisms regulating the 
most basic biological substrates.
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