
https://www.heighpubs.org/jnnd 029https://doi.org/10.29328/journal.jnnd.1001031

Research Article

Comparison of resting-state 
functional and eff ective connectivity 
between default mode network and 
memory encoding related areas  
Supat Saetia1*, Fernando Rosas2, Yousuke Ogata1, 
Natsue Yoshimura3 and Yasuharu Koike1

1Department of Information Processing, Interdisciplinary Graduate School of Science and 
Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 
Kanagawa 226-8503, Japan
2Center for Psychedelic Research, Department of Medicine, Centre for Complexity Science and 
Department of Mathematics, Data Science Institute, Imperial College London, South Kensington, 
London SW7 2AZ, United Kingdom 
3Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and 
Technology Agency (JST), 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan

More Information 
*Address for Correspondence: Supat 
Saetia, Department of Information Processing, 
Interdisciplinary Graduate School of Science and 
Engineering, Tokyo Institute of Technology, 4259 
Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 
226-8503, Japan, Tel: 045-924-5054; 
Email: saetia.s.aa@m.titech.ac.jp 

Submitted: 14 April 2020
Approved: 23 April 2020
Published: 24 April 2020

How to cite this article: Saetia S, Rosas F, 
Ogata Y, Yoshimura N, Koike Y. Comparison of 
resting-state functional and eff ective connectivity 
between default mode network and memory 
encoding related areas. J Neurosci Neurol 
Disord. 2020; 4: 029-037.  

DOI: 10.29328/journal.jnnd.1001031

ORCiD: orcid.org/0000-0001-6139-876X

Copyright: © 2020 Saetia S, et al. This is 
an open access article distributed under the 
Creative Commons Attribution License, which 
permits unrestricted use, distribution, and 
reproduction in any medium, provided the 
original work is properly cited.

OPEN ACCESS

Introduction
Humanity has invented writing to physically represent 

and record ideas or experience, to preserve and pass on to 
others or to the next generation, thus initiate the historical 
age of humankind. Since then, human invented several means 
of representing and recording information beyond conceptual 
representation, such as words and letters. Modern day human 

even has medium to store accurate representation of visual 
and auditory information.

Episodic memory is a memory of autobiographical events 
which is a memory of personal events, times, places, and 
associated with emotion and other contextual knowledge. 
With this kind of memory, a person can remember personal 
experience and consciously aware of the certain situation at a 

Abstract 

Currently brain connectivity modelling, constructed from data acquired by non-invasive 
technique such as functional magnetic resonance imaging (fMRI), is a well-received approach 
to illustrate brain function. However, not all connectivity models contains equal amount of 
information. There are two types of connectivity model that could be constructed from fMRI 
data, functional and eff ective connectivity. Eff ective connectivity includes information about the 
direction of the connection, while functional connectivity does not. This makes interpretation of 
eff ective connectivity more meaningful than functional connectivity. The objective of this study 
is to show the improvement in interpretability of eff ective connectivity model in comparison 
to functional connectivity model. In this study, we show how the diff erence in the information 
contained within these two model impacts the interpretation of the resulting connectivity model 
by analyzing resting-state fMRI data on episodic memory-related cognitive function using CONN 
Toolbox bivariate correlation measurement for functional connectivity analysis and Tigramite 
causal discovery framework for eff ective connectivity analysis on an episodic memory related 
resting-state fMRI dataset. The comparison between functional and eff ective connectivity results 
show that eff ective connectivity contains more information than the functional connectivity, and 
the diff erence in the information contained within these two types of model could signifi cantly 
impact the intepretation of true brain function. In conclusion, we show that for the connectivity 
between specifi c pair of brain regions, eff ective connectivity analysis reveals more informative 
characteristic of the connectivity in comparison to functional connectivity where the depicted 
connectivity lack any additional characteristic information such as the direction of the connection or 
whether it is a unidirectional or bidirectional. These additional information improve interpretability 
of brain connectivity study. Thus, we would like to emphasis the important of brain function 
study using eff ective connectivity modelling to obtain valid interpretation of true brain function 
as currently a large body of research in this fi eld focuses only on functional connectivity model.
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certain time of that event [1]. This episodic memory is a part 
of declarative memory, a category of long-term memory [2]. 
It is unique because it is often represented in form of visual 
information in order of event occurrence on personal timeline 
with memory owner as a perspective observer. This cognitive 
function is important because it enables human to project 
oneself backward in time and recall several aspects of one 
experience. This ability becomes the source of self-awareness 
and induces intelligence which set human apart from other 
animals.

Illustrating how brain works for a speciϐic cognitive 
function is a challenging task. Currently available technologies 
for observing brain function non-invasively is limited, and 
the signal acquired is indirect. One of the most prominent 
technology in this ϐield is functional magnetic resonance 
imaging (fMRI). The fMRI technology has enabled the 
observation of regional brain activation by detecting the 
amount of oxygen presence in blood in each particular part 
of the brain, on the principle that the region that is working 
is consumes oxygen for energy. This allows the chronological 
observation of brain regional activations, and by plotting 
those regional activations through time, we can assume 
information pathways from region to region inside the brain 
during any particular cognitive task. These pathways are the 
brain connectivity.

Since brain activity cannot be observed physically, the 
brain connectivity is a useful tool to model its mechanism. 
A connectivity model or a network is a mathematical 
representation of a real-world complex system denoted by 
a collection of nodes and links between pairs of nodes [3]. 
Nodes usually represent brain region, and links represent 
connection between regions. The model illustrates how each 
regions of the brain interact with each other and shows how 
informations, in form of neuronal signal, ϐlow through them. 
Combined with the background knowledge of each particular 
region’s responsibility to certain lower cognitive function, the 
mechanism of higher cognitive function can be inferred. There 
are 3 types of connection, anatomical, functional and effective 
connection. The anatomical connection is an actual physical 
link between regions by biological pathway. The functional 
connection is undirected connection represents correlated 
activity between brain regions, while the effective connection 
is directed connection represents causal activity between 
brain regions [4].

The anatomical connectivity is the most straight forward 
of all 3 connectivities in terms of inferring and interpreting 
connectivity model, because there are physical evidences 
and measurable signals as ground truth, albeit postmortem 
pathological study of neuronal structure or invasive procedure 
on live patient are usually required. Contrarily, functional 
and effective connectivity usually derived from non-invasive 
measurement and they are hypothetical connections. It 
is usually controversial to infer solid conclusion from 

hypothetical connections as there is no ground truth to support 
the inference, thus limiting our ability to make meaningful 
interpretation of these connectivities. Confounding factors 
present due to limitation of non-invasive measurement, such 
as scanner noise, subject motion, physiological artefacts, or 
coregistration accuracy, further reduce the reliability of the 
resulting connectivity model.

There are several mathematical frameworks or algorithms 
that can be applied to mine both functional and effective 
connectivity out of fMRI blood-oxygen-level-dependent 
(BOLD) signal. The example of such algorithm is Granger 
causality. Granger causality [5] is a mathematical framework 
commonly employed to model causality of the neuronal 
activity from fMRI BOLD signal. The underlying assumption of 
this framework is that if XY if and only if a change in X has an 
effect on Y [6]. However, all we can imply from observational 
data are statistical dependencies. Inferring and interpreting 
causal relationship is controversial. Moreover, the fact 
that fMRI BOLD signal is an indirect measurement of actual 
neuronal signal further confounds the inference.

Regardless of fMRI technological limitation, there are 
attempts and progresses in research and development of 
framework to extract connectivity information from fMRI 
BOLD signal. CONN toolbox is a MATLAB toolbox designed 
to analyze functional connectivity from BOLD signals. This 
toolbox emphasis on preprocess the signals to make it suitable 
for functional connectivity analysis. Primary concern of 
signal preprocessing for conventional fMRI analysis is spatial 
preprocessing, such as, slice-timing correction to correct time 
lag between each slice acquisition, and realignment to correct 
displacement between slices caused by subject’s movement. 
However, in case of connectivity analysis, temporal aspect of 
the signal is also a concern, because connectivity analysis is 
temporal sensitive. Global signal regression can be used to 
remove temporal noise, but it is known to introduce negative 
correlation in the connectivity result which reduces its 
interpretability. CONN toolbox avoid that issue by utilizing 
component-based noise correction method (CompCor) 
instead of global signal regression, which increase sensitivity 
and speciϐicity of functional connectivity, thus allow for better 
interpretability [7].

Additional to a software designed speciϐically for fMRI 
connectivity analysis, any causal analysis framework 
has potential to carry out the task as well. Tigramite is a 
time-lagged causal discovery framework [8]. Compare 
to Granger causality, this framework relies on different 
set of assumptions to identify a causal graph. It performs 
conditional independence testing using the assumptions of 
time-order, Causal Sufϐiciency, the Causal Markov Condition, 
and Faithfulness, among others [9], hence improve causal 
interpretability in comparison to Granger causality. Beside 
conventional fMRI analysis, resting-state fMRI is gaining more 
and more attention in recent year. In contrast to conventional 
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pre phase, a white ϐixate crosshair was displayed for 500 ms, 
followed by 500 ms blank screen, then word-combination cue 
was displayed for 10s. During resting-state fMRI scan session, 
a blue ϐixate crosshair was displayed to the subject. The subject 
had not been given any instruction to perform any physical 
or cognitive task. In post phase, word-combination cue was 
displayed along with self-assessment question for 20s. The 
response was in 1 to 5 integer scale. The subject responded 
to the question by pressing corresponding numeric button 
on keyboard. In addition to 30 stimuli presented during pre-
phase, 10 novel stimuli and 5 attention checking stimuli were 
added to post phase.

Resting-state fMRI was performed on 3 T MR Scanner 
(Siemens). Forty continuous axial slices (slice thickness 3.2 
mm, 0.8 mm gap) were acquired in each volume using a T2*-
sensitive gradient echoplanar imaging sequence (TR: 2,500 
ms, TE: 30 ms, ϐlip angle: 80, FOV: 212 mm; 212 mm).

fMRI data preprocessing

The fMRI data in this study were preprocessed through 
CONN toolbox standard preprocessing pipeline. The pipeline 
utilizes SPM8 for spatial preprocessing which includes slice-
timing correction, realignment, normalization, and smoothing 
(8-mm FWHM Gaussian ϐilter). Temporal preprocessing is 
done using component-based noise correction (CompCor) 
implementation of CONN toolbox. The temporal covariates 
removed by linear regression are the estimated subject 
motion (three-rotation and three translation parameter, 
and another six parameters representing their ϐirst-order 
temporal derivatives), the BOLD time-series within the 
subject-speciϐic white matter mask (three PCA parameters), 
and cerebrospinal ϐluid (CSF) mask (three PCA parameters). 
The resulting residual BOLD time-series were band-pass 
ϐiltered at 0.01 Hz < f < 0.10 Hz [7].

ROI BOLD extraction

The region of interest (ROI) BOLD signals used in both 
CONN and Tigramite analysis were extracted using CONN 
toolbox’s preprocessing pipeline. The ROI BOLD signals were 

fMRI which the experiment design revolves around block- or 
event-related task, resting-state fMRI is a model-free analysis 
for any steady-state fMRI dataset. It increases analytic options 
for describing the functional organization of the brain [10]. In 
this work, we compared resting-state functional connectivity 
model from CONN toolbox and effective connectivity model 
using Tigramite framework. Functional connectivity models 
only consider temporal correlation (undirected connection) 
while effective connectivity models consider temporal 
causality (directed connectivity). Additional information 
obtained from directed connectivity may improve fMRI 
connectivity interpretability, which is a major controversial in 
the ϐield of brain connectivity modeling [11].

Methods
Subjects

This study contains data from 120 subjects (of all 149 
participants, 1 was removed for biased questionnaire 
responses, 3 were removed due to data incompletion, and 
12 participants voluntarily withdrew from the study). The 
subject group included in this study consists of 68 females 
and 52 males. Minimum age is 45 year-old and maximum is 65 
year-old (Mean: 55.03, SD: 6.07).

Experiment design

A behavioral test was used to evaluate episodic memory 
recollection capabilities of the subjects. Stimuli were presented 
to the subjects to invoke episodic recollection. Stimulus used 
in this study was 3-word tuple cue consisted of descriptive 
time, place, and action. This word combination was used to 
stimulate subject’s episodic recollection because they are 
basic elements of episodic memory [1]. Each trial consisted of 
30 cues. Each cue had 2 corresponding responses, difϐiculty of 
recollection and conϐidence of recollection.

There were 3 phases in a single resting-state fMRI data 
acquisition session, pre resting-state fMRI, resting-state fMRI, 
and post resting-state fMRI. In pre resting-state fMRI phase, 
a set of 30 stimuli was presented to the subject. The subject 
did not need to respond to any of the stimuli in this phase. 
The pre phase was then followed by 10 minutes resting-state 
fMRI acquisition session, where the subject was asked to lie 
still inside fMRI scanner and to refrain from performing any 
cognitive task. In post phase, the same set of stimuli presented 
to the subject during the pre-phase was presented to the 
subject. In this phase, the subject responded to each stimulus 
by performing self-assessment of difϐiculty and conϐidence in 
episodic memory recollection of the corresponding scenario 
associated with each stimulus. The summary of the paradigm 
is shown in ϐigure 1.

Data acquisition

Stimuli and self-assessment questionnaires were 
presented to subjects using ‘Presentation’ stimulus delivery 
program (Neurobehavioral Systems Inc, Albany, CA, USA). In 

Figure 1: Resting-state fMRI session paradigm.
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average BOLD time-series computed across all the voxel 
within the ROI. The ROIs were deϐined by Harvard-Oxford 
Atlas. Ten ROIs were selected for connectivity analysis (Table 
1). The selected ROIs consisted of Default Mode networks and 
area that are known to be responsible for episodic memory 
related cognitive functions [12]. Those regions were selected 
for this study to model the memory-related connectivity that 
shows the interaction among those region in relation to our 
memory-related cognitive function of interest.

Behavioral test

Self-assessment memory recollection test questionnaire 
was used to evaluate subject’s episodic recollection ability. The 
assessment measures 2 parameters, difϐiculty in performing 
recollection, and conϐidence of the accuracy of the content 
of the recollection. The difϐiculty level indicates how much 
effort the subject has to assert in order to recall a memory of 
particular scenario speciϐied by the stimulus. The conϐidence 
level indicates how certain the subject feel about the accuracy 
of the recalled memory. The assessment results were used as 
between-subject contrast for group-level analysis.

CONN ROI-to-ROI analysis

All aforementioned 10 ROIs (Table 1) were used as 
seeds for this analysis to estimate the ROI-to-ROI functional 
connectivity (bivariate correlation measure) among these 
ROIs. Between-subjects contrast is deϐined by behavioral 
results from memory recollection test.

The second-level between subject contrasts was determined 
by memory recollection self-assessment questionnaire with 2 
parameters, recollection difϐiculty and conϐidence. The difϐiculty 
shows how much effort the subject need to assert to recall the 
memory. The conϐidence shows how much conϐidence the 
subject has in regard of the accuracy of the recalled memory. 
The self-assessed conϐidence level is shown to be associated 
with episodic memory retrieval performance [13].

Tigramite analysis

We model causal relation among 10 ROIs (Table 1) for 

each individual subjects using Tigramite causal time series 
analysis software package. It is a time-lagged causal discovery 
frameworks [9]. There are 2 free parameters for the algorithm, 
the maximum time lag τmax, and the signiϐicance threshold τmax 
in the condition-selection step. To determine maximum time 
lag τmax, we estimated lagged unconditional dependencies of 
the BOLD time-series and found the dependencies diminish 
beyond a lag of 8. The signiϐicance threshold   was set to 
0.1. The α is a regularization parameter in model-selection 
techniques, and should not be seen as signiϐicance test level in 
the condition-selection step [14]. Group representative model 
was constructed by median aggregation of connection weight 
of corresponding link of each individual connectivity graph. 
We used median to reduce the effect of outliers.

Discussion
Spontaneous BOLD fl uctuations in resting-state 
connectivity model

The spontaneous BOLD ϐluctuations or spontaneous 
neuronal activity is brain activity that is not associated to any 
speciϐic input or output. It is usually observable in resting-
state fMRI data since the resting-state data acquisition 
protocol attempts to minimize both sensory input and subject 
response, the subject is also asked to refrain from performing 
cognitive task. Thus, the spontaneous BOLD ϐluctuation 
represents intrinsic neuronal activity generated by brain 
[15]. In traditional task-related fMRI study, this ϐluctuation 
is eliminated by process of averaging across many trials 
along with other physiological artefacts, such as cardiac or 
respiratory activity, and non-physiological artefacts, such as 
scanner instability. 

It is reasonable to eliminate spontaneous BOLD ϐluctuation 
from tradition task-related fMRI study because it increases 
conϐidence that the effect being studied is related to the task. 
However, in resting-state connectivity study, eliminating the 
ϐluctuation along with other artefacts poses a potential risk 
of decreasing validity. Thus, spontaneous BOLD ϐluctuation 
is crucial to resting-state connectivity modelling. The major 
concern for spontaneous BOLD data acquisition is to ensure 
that the results are not contaminated by or originated from 
spurious sources of variance BOLD, or other artefacts. CONN 
toolbox [7] address this issue by proposed and implemented 
an anatomical component-based noise correction method 
(aCompCor) [16], which not only increase the validity, but 
also the sensitivity and speciϐicity of the connectivity analysis.

Several studies have shown that many neuro-anatomical 
systems is coherent in their spontaneous activity [15] 
including task-negative/default mode [17-20], hippocampus 
or episodic memory [21,22]. The evidence of coherent 
of spontaneous BOLD ϐluctuation is also observable in 
functional connectivity analysis of this study, the temporal 
correlations between spatial coherence are shown by 
connections of hippocapus, anterior parahippocampal cortex, 
and lateral parietal Default Mode network (Table 2). The 

Table 1: Selected regions of interest (Harvard-Oxford cortical structural probability 
atlases).
Hemisphere Region AbbreviationAbbreviation

Right hippocampus Hippocampus r
Left hippocampus Hippocampus l

Right anterior parahippocampal cortex aPaHC r
Left anterior parahippocampal cortex aPaHC l

Right posterior parahippocampal cortex pPaHC r
Left posterior parahippocampal cortex pPaHC l

- medial prefrontal cortex Default Mode 
network 

networks.DefaultMode.
MPFC

Right lateral parietal Default Mode network networks.DefaultMode.
LP (R)

Left lateral parietal Default Mode network networks.DefaultMode.
LP (L) 

- posterior cingulate cortex Default Mode 
network 

networks.DefaultMode.
PCC
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coherent connections of hippocampus, and lateral parietal 
Default Mode network also presence in resulting effective 
connectivity analysis. Additionally, coherent connection of 
posterior parahippocampal cortex is also in the effective 
connectivity model with the absence of connection of anterior 
parahippocampal cortex. We will discuss about the difference 
of resulting functional and effective connectivity in the next 
section.

Functional and eff ective connectivity

Functional connectivity is deϐined as the temporal 
correlation among the activity of different brain area. Effective 
connectivity is deϐined as the causal relation among the activity 
of different brain areas [23]. The fundamental difference 
between functional and effective connectivity is the temporal 
implication of the source of the effect. Consider the simpliϐied 
connectivity of brain regions X, Y, and Z, functional connection 
between X and Y implies region X’s activity temporally 
correlated to activity of region Y. However, there is a possibility 
that this correlation is cause by region X and region Y react to 
the input from the region Z. The disregard of temporal order 
in functional connectivity analysis decreases the validity of 
the interpretation of the resulting connectivity. On the other 
hand, the effective connectivity considers temporal order of 
the source and destination of the connection, thus, improve 
the validity of the connectivity intepretation.

This aspect is especially important when analyzing the 
connectivity from fMRI BOLD signals because the low temporal 
resolution nature of the BOLD signal and other confounding 
factor, such as, movement and physiological artefacts. 
In [7], the authors emphasis the importance of temporal 
preprocessing step on BOLD signal in addition to traditional 
spatial preprocessing step of fMRI study to remove temporal 
confounding factors. Inadequate noise reduction of BOLD data 
may result in spurious connections in both functional and 
effective connectivity which could lead to faulty intepreation 
of the connectivity of interest. Both functional and effective 
connectivities in this study used the same CONN toolbox 
preprocessing pipeling to preprocess BOLD signals before 
connectivity analysis.

CONN toolbox was used to analyze functional connectivity 

in this study. It utilizes seed-based correlation framework to 
determine functional connectivity in individual-level analysis, 
then the resulting measures are input into a second-level 
general linear model to obtain population-level result. The 
seed-based correlation analysis obtains a full connectivity 
model by iteratively input each ROI as a seed to analyzing 
correlation between it and other ROIs, then combine all of 
the seed connections together. This approach does not take 
temporal order relation between each seed into account.

For effective connectivity analysis, we utilized Tigramite, 
a time-lagged causal discovery framework [8] to analyze 
effective connectivity from the preprocessed BOLD signals. 
This framework differ from CONN toolbox approach in that it 
considers time-lagged, or temporal order of each connectivity 
as shown in ϐigure 2. The lagged unconditional dependencies 
of the BOLD time-series is estimated to determine the time 
point when the dependencies diminish. The framework then 
estimates the connectivity along the lagged time, thus achieving 
temporal-ordered connectivity, or effective connectivity. 
The population-level connectivity was calculated by median 
aggregation of individual subject’s connectivity.

Comparing the resulting connections from these analyses 
(Tables 3,4), we can clearly see that the effective connectivity 
yields more concise connectivity as most low intensity 
connections were eliminated and the result from Tigramite 
also provide directional (causal relation) information between 
the connected brain regions. For example, we can see that 
coherent connection of posterior parahippocampal cortex and 
lateral parietal Default Mode network are bidirectional (Figure 
2), while what we can inferred from functional connectivity 
as a coherent connection of hippocampus is just a connection 
from right hippocampus to left hippocampus  (Figure 3). The 
advantages of having directional information also apply to the 
connection from right hippocampus (Hippo r) to right posterior 
parahippocampal cortex (pPaHC r), and from posterior 
cingulate cortex Default Mode network (PCC) to left lateral 
parietal Default Mode network (LP(L)), including coherent 
connection between 2 hippocampi (Hippo r and Hippo l). This 
additional information gives effective connectivity advantage 
in term of interpretability in comparison to functional 
connectivity, as these 3 aforementioned connections are 
not difference from other connections, however in effective 
connectivity model, these 3 connections are unidirectional 
while the rest are bidirectional.

Interpreting connectivity models

Hippocapus is known to play crucial role in both memory 
encoding [24], and memory recollection [25,26]. Considering 
our experiment paradigm where the subjects were presented 
with memory recollection stimuli during pre-resting-state 
fMRI phase, the hippocampus is likely to active during resting-
state fMRI scan phase even without the subject consciously 
perform the recollection task, as the hippocampus performs 

Table 2: Consolidated top 10 ROI-to-ROI connections by intensity. (Thresholded at 
FDR-corrected p < 0.05).

ROI ROI Intensity
Hippocampus l Hippocampus r 36.82 

pPaHC r pPaHC l 33.38 
networks.DefaultMode.LP (L) networks.DefaultMode.LP (R) 30.37 
networks.DefaultMode.PCC networks.DefaultMode.LP (R) 26.78 

Hippocampus l pPaHC l 24.17 
networks.DefaultMode.LP (L) networks.DefaultMode.PCC 21.72

pPaHC r Hippocampus r 21.38
pPaHC l Hippocampus r 20.32 
pPaHC r Hippocampus l 19.55

networks.DefaultMode.MPFC networks.DefaultMode.PCC 17.18
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memory consolidation and strengthening of the recalled 
memories in pre resting-state fMRI phase [27]. Moreover, 
there also is an evidence shows that left and right hippocampi 
responsible for different cognitive roles. The left hippocampus 
plays a critical role in episodic verbal memory while the right 
is more important for spatial memory processing [28]. This 
might indicate that the right hippocampus is processing 
projected spatial memory in recalled episodic memory, then 
pass the information to the left hippocampus for it to process 
the information into abstract concept to be consolidated 
and reinforced. Considering the between-subject contrast 
of this study, which is High-Conϐidence-Low-Difϐiculty-Low-
Conϐidence-High-Difϐiculty, it is reasonable to see this effect.

While the unique contribution of posterior 
parahippocampal cortex is unclear, several study suggest that 
it contributes to memory function as patients with lesions 
involving the parahippocampal cortex are impaired on a 
memory task [29]. From the resulting effective connectivity of 
this study, it suggests that activity in right hippocampus cause 
activity in right posterior parahippocampal area. Several 
studies suggest that the parahippocampal cortex is functionally 
dissociable from the hippocampus [30-32]. However, the 
dissociation does not eliminate the possibility of information 
exchange between hippocampus and parahippocampal cortex 
as shown in an fMRI study of incidental target detection task, 
the parahippocampal cortex was active only for novel scenes 
while the hippocampus was selectively active to changes in 
the spatial relationship between objects and their background 
context [33]. In case of the result of this study, the connection 
from right hippocampus to posterior parahippocampal 

Table 3: CONN ROI-to-ROI connection weight. (thresholded at FDR-corrected p < 0.05). Header row represents source region and header column represent destination 
region. Refer to brain region abbreviation in table 2.

Hippo l Hippo r aPaHC l aPaHC r pPaHC l pPaHC r LP (L) LP (R) MPFC PCC
Hippo l 0.00 36.82 15.96 12.99 24.17 19.55 10.58 9.48 14.55 7.07
Hippo r 36.82 0.00 15.03 16.29 20.32 21.38 8.98 8.92 13.65 6.26
aPaHC l 15.96 15.03 0.00 17.13 13.18 10.89 6.34 4.51 6.95 4.49
aPaHC r 12.99 16.29 17.13 0.00 12.74 13.58 6.40 7.05 9.03 5.16
pPaHC l 24.17 20.32 13.18 12.74 0.00 33.38 15.44 14.15 11.78 17.13
pPaHC r 19.55 21.38 10.89 13.58 33.38 0.00 13.04 12.19 8.13 13.35
LP (L) 10.58 8.98 6.34 6.40 15.44 13.04 0.00 30.37 10.36 21.72
LP (R) 9.48 8.92 4.51 7.05 14.15 12.19 30.37 0.00 14.40 26.78
MPFC 14.55 13.65 6.95 9.03 11.78 8.13 10.36 14.40 0.00 17.18
PCC 7.07 6.26 4.49 5.16 17.13 13.35 21.72 26.78 17.18 0.00

Table 4: Group Tigramite connection weight. (threshold at FDR-corrected p < 0.05). Header row represents source region and header column represent destination region. 
Refer to abbreviation of brain region in table 2.

Hippo l Hippo r aPaHC l aPaHC r pPaHC l pPaHC r LP (L) LP (R) MPFC PCC
Hippo l -0.051 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Hippo r 0.028 -0.052 0.000 0.000 0.000 0.027 0.000 0.000 0.000 0.000
aPaHC l 0.000 0.000 -0.239 0.000 0.000 0.000 0.000 0.000 0.000 0.000
aPaHC r 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.000
pPaHC l 0.000 0.000 0.000 0.000 0.004 0.029 0.000 0.000 0.000 0.000
pPaHC r 0.000 0.000 0.000 0.000 0.030 -0.067 0.000 0.000 0.000 0.000
LP (L) 0.000 0.000 0.000 0.000 0.000 0.000 0.034 0.027 0.000 0.000
LP (R) 0.000 0.000 0.000 0.000 0.000 0.000 0.028 -0.055 0.000 0.000
MPFC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.079 0.000
PCC 0.000 0.000 0.000 0.000 0.000 0.000 0.028 0.000 0.000 0.022

Figure 2: Tigramite graphic model of resting-state fMRI connectivity with 10 seed 
area. Results are threshold at FDR-corrected p < 0.05.

Figure 3: CONN toolbox ROI-to-ROI graphic model with 10 highest connections 
of resting-state fMRI connectivity with 10 seed area. Results are threshold at FDR-
corrected p < 0.05.
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cortex may suggest that posterior parahippocampal cortex is 
encoding memory that it recognizes as novel from information 
formerly processed by hippocampus.

Posterior cingulate cortex and lateral parietal Default Mode 
network are known to involve episodic memory retrieval 
function [34,35]. While the functional relationship between 
these two network is unclear, there is a hypothesis stated that 
the posterior cingulate cortex is a central node in the default 
mode network of the brain [36,37]. There are evidences show 
increase in activity in the posterior cingulate cortex during 
episodic recollection [38], and mental time-travelling [39]. 
Some study also suggests that it regulates balance between 
internally and externally focused thought [40] as it is active 
both during task-related and rest cognitive state [41]. Since the 
evidences of speciϐic role of posterior cingulate cortex default 
mode network in response to speciϐic cognitive function are 
inconclusive, this particular connection may only reϐlect the 
intrinsic default mode network activity of the brain. 

In summary, the group with higher episodic memory 
recollection performance has an active network in hippocampus 
and posterior parahippocampal area. 

Within-region interaction and coherent connection may 
also contribute to the performance gain of the group, but it is 
outside the scope of this study.

Results
Behavioral results

The behavioral proϐile of each subjects is determined by 
self-assessed memory recollection questionnaire. The subject 
was presented with 3-word combination stimuli consisted of 
descriptive time, place, and action. Then the subject was asked 
to recall memory related to the stimuli and determine the 
difϐiculty and the conϐidence of the recollections.

The subjects are divided into 2 groups by Euclidean 
distance clustering based on episodic memory recollection 
performance obtained using self-assessment test during post 
resting-state fMRI phase. The self-assessment test asked the 
subjects to determine their conϐidence in the correctness of 
their recollections and difϐiculty in recalling those memories. 
Both assessments were quantify from low too high in 1 to 5 
integer scale. The clustering was done in 2-dimensional plane 
where each dimensions represents each aforementioned 
conϐidence and difϐiculty parameters. The values of each 
parameters for an individual subject are mean averages value 
of the test across all recollection stimuli. From the result of 
the clustering, the group with lower average conϐidence is 
considered a low-conϐidence group, and vice versa. Likewise, 
the group with lower average difϐiculty is considered low-
difϐiculty group, and vice versa. Combining aforementioned 
2 parameters, the groups can be categorized into 2 
characteristic groups, high-conϐidence-low-difϐiculty group, 

and low-conϐidence-high-difϐiculty group, with 79 members 
and 41 members respectively (Figure 4 and Table 5). These 
categories were used as between-subject contrast for group 
resting-state connectivity analysis.

Functional connectivity

After the standard fMRI data preprocessing protocol 
and additional temporal preprocessing in preparation 
for connectivity analysis by CONN toolbox and Tigramite 
framework, the BOLD signal of each regions of interest are 
extracted. The ROI BOLD signals are average BOLD time-series 
aggregated across all the voxel covered within the ROI. The 10 
ROIs were selected for the analysis based on the background 
knowledge’s that those areas are known to involve in memory 
related cognitive function (Table 1). The purpose of including 
those areas in the connectivity model is to model how those 
areas interact with each other in relation to our cognitive 
function of interest. The roles and functions of each individual 
regions will be discussed in detail in the discussion section. The 
areas are deϐined using Harvard-Oxford Atlas. Then the CONN 
toolbox ROI-to-ROI connectivity analysis was performed on 
the aforementioned ROI BOLD data.

The resulting connectivities are shown in table 3 and the 
highest 10 connectivities are listed in table 2. CONN toolbox 
constructs a connectivity graph using seed-based approach 
by iteratively considers each ROIs as seed, then combines 
the results of every seeds (ROIs) into one single graph. This 
approach is acceptable for functional connectivity analysis 
since functional connectivity concern only correlation 
between seed and region-of-interest, the direction of the 
connection does not affect correlation measures. It can be 
observed in table 3 that swapping a speciϐic pair of seed region 
and ROI does not yield different connectivity measure. This is 

Figure 4: Euclidean distance clustering of episodic recollection performance. The 
group with lower average confi dence is considered a low-confi dence group, and 
vice versa. Likewise, the group with lower average diffi  culty is considered low-
diffi  culty group, and vice versa.

Table 5: Category of subject based-on self-assessment memory recollection test.
Group Number of subjects

High Confi dence Low Diffi  culty (Red) 79
Low Confi dence High Diffi  culty (Blue) 41
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completely different from effective connectivity which a pair 
of regions has different connection measure depends on the 
direction of the connections.

Table 2 shows consolidated highest 10 connections 
sorted by intensity. Figure 3 is a connectivity plot of the 
aforementioned consolidated connections (full connectivity 
plot is included in ϐigure 5 in Supplementary materials 
section). The highest 3 connections are the hemisphere pairs of 
the identical regions. The most intense connectivity following 
those pairs is a connection between posterior cingulate cortex 
Default Mode network and right lateral parietal Default Mode 
network, followed by connections between hippocampus 
and anterior parahippocampal cortex on the left hemisphere, 
left lateral parietal Default Mode network and posterior 
parahippocampal cortex and hippocampus on the right 
hemisphere, left posterior parahippocampal cortex and right 
hippocampus, right posterior parahippocampal cortex and 
left hippocampus, and ϐinally medial prefrontal cortex Default 
Mode network and posterior cingulate cortex Default Mode 
network.

Eff ective connectivity

The effective connectivity analysis was performed using 
the exact same data with the functional connectivity analysis 
in previous section. The exact same preprocessing protocol is 
performed on the data, so that any discrepancy in the resulting 
connectivity model is a result of capability of the analytic 
algorithms, since one of the goal in this study is to compare 
two models from different modal of analyses.

The resulting effective connectivity shows 7 connectivities 
among the selected ROI (Figure 2). Five out of 7 connections 
are interactions between two identical regions of difference 
hemisphere. The remaining 2 connections are connection from 
right hippocampus to right posterior parahippocampal cortex, 
and from posterior cingulate cortex Default Mode network 
to left lateral parietal Default Mode network. All connection 
weights (mutual conditional information measure), including 
auto mutual conditional information measure, is shown in 
table 4. Tigramite’s graphic model and time-series graph 
model are included in Supplementary material as ϐigures 6,7 
respectively.

Conclusion
In this work, we have constructed functional and effective 

connectivity models from the same resting-state fMRI 
BOLD data. By comparing these two models, we illustrated 
the practical advantages of effective connectivity over 
functional connectivity. The Tigramite framework used to 
derived effective model provides performance advantage in 
comparison to CONN toolbox by eliminating trivial connection 
from the connectivity model, in addition to connections’ 
directional information of the connectivity model. These 
advantages increase intepretability of the model. Currently, 

a large body of studies in brain connectivity focuses on only 
functional connectivity analysis. As the result of this study 
has shown, we would like to emphasize the limitation of 
functional connectivity analysis in terms of interpretability, 
and would like to encourage brain connectivity study with 
effective connectivity model as it improves interpretability of 
the actual brain function.

Nonetheless, the Tigramite framework is a novel 
framework and the application on fMRI BOLD data is scarce. 
Further study need to be done to conϐirm its validity on BOLD 
data application.

We would like to also emphasize the importance of 
BOLD data noise reduction, since these connectivity analysis 
frameworks are temporal sensitive and prone to generate 
spurious connection from BOLD signal noise. The preprocessing 
pipeline established in CONN toolbox is crucial to successful 
connectivity modeling in both case.
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