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Introduction
Parkinson’s disease [PD] is a common progressive 

neurodegenerative movement disorder [1]. Most important 
pathological hallmark of PD is loss of dopaminergic neurons 
in SNPc and presence of Lewy bodies, which contains an 
abundant amount of α-synuclein [2,3].

Prevalence of PD is estimated to be around 0.3% in the 
general population, 1.0% in people over 60 years, and 3% 
in people older than 80 years in industrialized countries [4]. 
In European countries estimated prevalence ranges from 65 
to 12,500, whereas incidence rates range from 5 to 346 per 
100,00 person years [5].

Age is considered to be a signiϐicant risk factor for PD 
[6]. However, risk of men in developing PD is 2 times higher 
than women, but women have faster progression and higher 
mortality rate in PD [7]. Pesticides and rural living had been 
linked to PD [8,9]. Beta2 receptors antagonist is linked to PD, 
whereas beta2 agonist decreases the risk [10,11]. 

Statins [12,13], cigarette smoking [8], drinking coffee 
[14,15], and calcium channel blockers [16] have inverse 
association in PD. Hyperuricemia or gout [17-20], and use 

of NSAIDS [21-24] have conϐlicting evidence. Positive family 
history is considered to be a risk factor for PD [25]. The 
relative risk in ϐirst-degree relatives of PD cases increases by 
2-3 folds if compared to controls [26,27]. 5% - 15% of cases 
are linked to familial form of PD [28-30]. A handful of genes 
are linked to PD [28,29,31,32].

Diagnosis of PD is mainly clinical. The diagnostic criteria 
had been recently updated by movement disorder society 
(MDS) [33]. It consists of variety of motor and non-motor 
symptoms. Motor symptoms may include gait disturbances 

Abstract 

Parkinson’s disease (PD) is thought to be the most common neurodegenerative disease 
with movement disorder. The key motor symptoms are rigidity, tremor, akinesis/hypokinesia/
bradykinesia, and postural instability. However, in our day-to-day clinical practice we tend to see 
several other symptoms which may be motor or non-motor. Non-motor symptoms (NMS) are quite 
common and debilitating. The pathological hallmarks of PD are loss of dopaminergic neurons in 
the substantia nigra pars compacta (SNPc) and accumulation of unfolded or misfolded alpha-
synuclein. Diagnosis of PD is diffi  cult in the pre-motor stage. Late diagnosis renders a substantial 
loss of dopaminergic neurons in SNPc and spread of disease in other parts of the brain. This 
may manifest as either full blown symptoms requiring multiple medications or may even lead 
to life threatening condition due to lack of early diagnostic tools and techniques. Biomarkers 
are required to diagnose PD at a very early stage when prevention is possible. Hence, we 
see a lot of interest among researchers involved in fi nding a biomarker specifi c to the disease. 
Biomarkers may be clinical, image based, genetic, and biochemical. Cerebrospinal fl uid (CSF) 
and serum markers which may correlate with disease pathophysiology are of great signifi cance. 
One such molecule which recently gained a lot of attention is neuron-specifi c enolase (NSE). 
The main aim of this paper is to highlight the role of NSE in predicting neurodegeneration and 
neuroinfl ammation ultimately refl ecting damage of brain cells in PD.
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(freezing of gait, festination, obstacle hesitation) postural 
abnormalities ( PISA syndrome and camptocormia), 
micrographia, hypomimia, and alterations in eye movements 
or blinking apart from four cardinal symptoms of tremor, 
rigidity, bradykinesia, and postural instability [34].

NMS comprises of psychiatric symptoms (apathy, 
depression, anxiety, hallucination, psychosis), hyposmia, 
cognitive impairment (mild cognitive impairment and 
dementia), sensory symptoms, dysphagia, sialorrhea, 
dysarthria, hypophonia, sleep-wake cycle disturbances, gastro
intestinal symptoms (delayed/reduced stomach emptying, 
constipation), genitourinary symptoms (sexual dysfunction, 
decreased libido, urinary frequency and urgency) and 
cardiovascular symptoms (post-prandial and postural blood 
pressure variations, dysrhythmias) [35-37].

In spite of having a strict diagnostic-criteria of PD, there 
are several diseases or disorders which can mimic PD. These 
disorders may comprise of secondary parkinsonism, atypical 
parkinsonism, and other neurodegenerative diseases [38]. 
MRI imaging can aid in differential diagnosis, however non-
diagnostic for PD per se [39]. Complex imaging like FDG-PET 
[40], SPECT [41], and MIBG scintigraphy [42,43] can aid in 
diagnosis of PD. However, the only issue is their availability in 
small centers and developing world.

Glial cells are known to produce toxic or trophic factors 
responsible for neuronal cell death or survival [44,45]. Glial 
cells may be responsible for pathophysiology of neuronal 
degeneration in PD [46,47]. Few studies have shown that when 
50-70% of dopaminergic neurons are lost in SNPc, clinical 
symptoms of PD manifests [48-50]. Loss of dopaminergic 
neurons and signiϐicant glial reaction are seen in post 
mortem parkinsonian brains [51]. However, an interesting 
thing to note is that some neurons are vulnerable to this 
pathologic process compared to others. It is also reported that 
dopaminergic neurons easily degenerate in regions with less 
astrocytes [52-56].

Great interest is seen among research community to ϐind 
a biomarker for PD which can differentiate PD patients from 
healthy controls. Until now, only CSF alpha-synuclein and 
neuroϐilament light (NfL) chains are considered to be speciϐic 
for PD. Recently, few researches have focused on NSE and their 
quantiϐication either in CSF or serum of neurodegenerative 
diseases [57-59].

Neuron specifi c enolase and PD

A glycolytic enzyme which catalyzes the conversion of 
2-phosphoglycerate (2-PG) to phosphoenolpyruvate (PEP) is 
enolase. Enolase is known to exist in the form of several tissue-
speciϐic isoenzymes, consisting of hetero or homodimers 
of 3 different monomer-isoforms (alpha, beta, and gamma) 
[60,61]. 

NSE also known as human enolase 2 (ENO2) is a 78 kDa 
gamma-homodimer [62,63]. The NSE gene is located on 
chromosome 12. It consists of 11 coding exons and spans more 
than 9213 nucleotides [64]. The biological half-life (t1/2) of 
NSE in body ϐluids is approximately 24 hours [62].

It is the dominant enolase-isoenzyme found in neuronal 
and neuroendocrine tissues [62]. Its levels in other tissues 
are negligible, except lymphocyte, platelets, and erythrocytes 
[65]. However, glial cells and astrocytes are also shown to 
express both homo and heterodimeric forms of the enzyme 
[60]. γ-enolase is also known to be in cells of the amine 
precursor uptake and decarboxylation lineage [63,64,66].

NSE is mainly cytosolic but membrane localization is 
also being reported based on the extracellular milieu and 
neurotrophicity [62,66]. In a normal state, NSE is not secreted 
by neuronal cells but only when damage occurs, it is secreted 
into the extracellular space [62,64,67]. A recent study had 
found a dual role of NSE, which may be protective or destructive 
in nature [68]. NSE is known to cause neuroinϐlammation, 
neurodegeneration, and even neuroprotection [64,68].

The neurotrophic factor exhibited by NSE is based on 
two important pathways, MAPK and  PI3K which helps in 
the translocation of enolase to plasma membrane of the cell 
[63,64,68]. NSE can promote neuroinϐlammation by activating 
microglial cells [64,68]. Translocation of enolase to plasma 
membrane has its downside too because it leads to production 
and release of proinϐlammatory cytokines like IFN-γ, IL-1β, 
TNF-α, NO, chemokines, and reactive oxygen species (ROS) 
[62,68,69].

NSE is considered as a marker of neurodegeneration as 
alteration of level is linked to neuronal damage and loss [64,68]. 
Serum levels of NSE correlated with intracranial bleeding post 
traumatic brain injury [70,71]. NSE mRNA expression levels 
have been found to be reduced in postmortem cortical brain 
tissue in cases with PD [68].

NSE levels in serum and CSF are related to extent of 
neuronal damage in conditions like ischemic stroke [72-76], 
TBI [70,71,77], AD [78,79], and MSA [80]. A study by Schaf, 
et al. did not ϐind any changes in serum levels of NSE in PD 
patients compared to controls [81].

A recent study by Katayama et al. looked at the CSF NSE of 78 
patients which included 27 patients with PD/DLB, 34 patients 
with non-PD/DLB (other neurodegenerative disorders), and 
17 controls. They found out CSF levels of NSE can be used to 
discriminate PD/DLB from non-PD/DLB because signiϐicantly 
elevated CSF NSE was detected in the non-PD/DLB group [82].

A recent case-control study from Poland looked at CSF 
NSE levels in 58 PD patients and in 28 healthy control 
subjects. They found out CSF NSE was signiϐicantly increased 
in PD patients compared to healthy controls. However, no 
signiϐicant correlation was found between CSF NSE levels and 
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disease severity assessed either in H-Y scale or in UPDRS part 
III or duration. This shows CSF NSE is not a useful marker to 
detect progression of the disease.

The authors believe CSF NSE can be promising biomarker 
of the axonal and glial degeneration seen in PD patients. CSF 
NSE levels also provided a high discrimination value between 
PD and healthy controls, with 78.6% sensitivity and 74.1% 
speciϐicity [83].

Discussion
Enolase is superabundant in cytosol and is a multifunctional 

enzymatic protein. It has can travel to the plasma membrane 
on receiving excitatory signals. Membrane expression of 
enolase is often seen on activated microglia, macrophages, 
and astrocytes. This can trigger inϐlammatory response with 
production of cytokines and chemokines and degradation of 
extracellular matrix. This may lead to migration of inϐlammatory 
cells to the injury site and promote more inϐlammation. It 
can behave as a plasminogen receptor and cause damage
to tissues when translocated to cell surface [62].

NSE is a cell speciϐic isoenzyme of enolase, which is 
involved in glycolysis. Expression of NSE in cytoplasm of 
neurons, which occurs αγ- and γγ-dimer happens late in neural 
differentiation. It is therefore considered to be a marker for 
neural maturation over time.

Human NSE is a major brain protein that constitutes 
between 0.4% and 2.2% of the total soluble protein of brain, 
depending on the region. In some neurons NSE accounts for 
3% - 4% of the total soluble protein [84]. It is speciϐic for 
peripheral neuroendocrine cells and neurons. 

Blood NSE is currently considered as a reliable tumor 
marker of SCLC as far as diagnosis, prognosis, and follow 
up is concerned [85,86]. Increased NSE is also reported 
in NSCLC [87,88]. NSE is also useful at diagnosis of NETs 
(neuroendocrine tumors) and gastroenteropancreatic (GEP)-
NETs [89,90].

Blood levels of NSE is increased in all stages of 
neuroblastoma, and greater increase has been linked to 
metastatic disease [91]. It is also increased in malignant 
pheochromocytoma [92,93], Guillain-Barré syndrome [94], 
Creutzfeldt-Jakob disease [95-97], carcinoid tumors [98], 
dysgerminomas [99,100], immature teratomas [101,102], 
Merkel cell tumor [103], melanoma [104], seminoma [105], 
renal cell carcinoma [106].

Among neurological diseases, increased NSE is associated 
with intracerebral hemorrhage [70,71], ischemic stroke 
[72-76], seizures [107,108], TBI [70,71,77], and comatose 
patients after cardiopulmonary resuscitation for cardiac 
arrest [109-113], newborns with perinatal hypoxic-ischemic 
encephalopathy [114-116], acute spinal cord injury [62,117-
119].

It is very evident that serum NSE is studied very less in 
PD patients and other neurological diseases mentioned above. 
We need a speciϐic biomarker to diagnosis PD because of the 
presence of atypical parkinsonism or secondary parkinsonism 
which can behave the same way as PD in the very early stage 
when only 10-20% of dopaminergic neurons are lost in SNPc.

Current markers we have now are either not available 
worldwide or not cost-effective. It is of utmost importance at 
this juncture to look for blood or CSF biomarker to conϐirm 
the diagnosis of PD at an early stage when prevention might 
be possible along with prognostication, predictability of 
individual treatment response, and monitoring of disease 
progression.

PD is associated with cognitive dysfunction. Two known 
subtypes are mild cognitive impairment and Parkinson’s 
disease dementia (PDD) [120]. The anatomical changes may 
be seen in several brain parts in PD patients with impairment 
in cognition. These changes might be seen in a) cerebellum; b) 
basal ganglia; c) limbic system; d) thalamus; e) hypothalamus; 
f) glial cells; g) locus coeruleus [121].

Mixed pathology and several underlying pathogenic 
processes are responsible for uncertainty and underdiagnosis 
of PD patients [122]. On one hand we have the Braak staging 
which consists of stage 1-6, where stage 1 being the starting 
of the spread and deposition of a-synuclein in the lower 
brainstem and the olfactory system, whereas stage 6 is the 
neocortical invasion of motor and sensory areas in brain 
[123-125]. On the other hand, we have an emerging role of 
striatal neurotransmitters in the pathophysiology in PD. The 
related abnormalities include, decrease in dopamine, GABA, 
adenosine and increase in glutamate and acetylcholine [126].

A few scientiϐic papers had also reported the similarity of 
pathological process in brain of AD and PDD. About 40%-50% 
of PDD patients may satisfy AD diagnostic criteria [127,128]. 
Several pathological processes in different stages of disease 
may be the reason behind absence of a single biomarker 
speciϐic to PD.

Conclusion
PD is a common neurodegenerative disease where 

symptoms appear late. It can be divided into prodromal, 
preclinical, and clinical. Till date, we don’t have a single speciϐic 
and sensitive biomarker to diagnose PD in preclinical stage. 
About 60% of dopaminergic neurons are already lost in SNPc 
when clinical symptoms become evident in PD individuals. 
Speciϐic and sensitive biomarkers are needed to diagnose the 
disease early. These new biomarkers can be a game changer 
in diagnosis, identifying individual at-risk of PD, prognosis, 
individualized therapeutic response, and progression. 
Researchers should work meticulously in this ϐield with a 
larger group of PD subjects, in different geographical locations, 
and in different disease stages to ϐind a single brain derived 
protein, which will be able to differentiate PD from healthy 
subjects.
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