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Introduction
In analogy to the Central Nervous System (CNS), Bone 

Marrow (BM) has recently been described as the Central 
Immune System (CIS) [1]. Both systems developed during 
vertebrate evolution, communicate through synapses and are 
able to learn.

The immune system has the capacity to learn and develop 
memory, similar to the brain. Unlike the brain with its mostly 
immobile network of neurons, the immune system is based 
on a network of mostly mobile cells. These two learning 
systems are interconnected. The development of immune 
cells is regulated by autonomic and somatosensory neurons. 
These nerves inϐluence hematopoiesis as well as priming, 
migration, and cytokine production of immune cells. In 
reverse, homeostatic neural circuits that control metabolism, 
hypertension, and the inϐlammatory reϐlex are inϐluenced by 
speciϐic immune cell subsets [2]. Neuronal synapses transmit 
electrical impulses directly via gap junctions (about 3.5 nm 
distance) or indirectly via neurotransmitters (20 - 40 nm 
distance). Immunological synapses (about 13 nm distance) 
transmit biochemical signals. Nestin-GFPhi neuron-glial 
antigen-2 (NG2+) elongated cells run adjacent to arteries 
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and arterioles [3]. These adrenergic nerves are surrounded 
by bundles of nonmyelinating Schwann cells [3]. Recently, it 
was suggested that lymphoid organs are innervated in a new 
way [2]. It could be visualized that the cytoplasm of a subset 
of dendritic cells is inϐiltrated by adrenergic nerve ϐiber 
terminals ending at microtubular and microϐilament walls [2]. 

The central immune system and the neuroimmune 
network

In 2003, bone marrow was reported for the ϐirst time to 
function as a priming site for T-cell responses to blood-borne 
antigens [4]. This was corroborated and extended ten years 
later by two-photon dynamic imaging of mouse brain calvaria 
[5]. Naïve CD8+ T cells were observed to crawl rapidly at a 
steady state but arrested immediately upon sensing antigenic 
peptides. As shown in the cartoon of [1], antigen-speciϐic T 
cells decelerated, clustered together with antigen-presenting 
cells, upregulated CD69, and divided in situ to yield effector 
cells [5]. 

The neuroimmune network is tridirectional. It consists 
of immune cells and immune-derived molecules, endocrine 
glands and hormones, the nervous system, and neuro-
derived molecules [6]. This network plays a signiϐicant role 
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in communication pathways. It is involved in homeostatic 
regulation at the level of the whole organism and at local 
levels [6]. Details of such neuronal–immune cell units have 
been studied in allergic inϐlammation of the nose [6]. The 
nervous system regulates the function of immune cells 
through neurotransmitters or neuropeptides. Conversely, 
immune cells play a key role in neuronal injury, repair, and 
differentiation [7]. 

CNS immunosurveillance 

The CNS is lined by meninges - dura, arachnoid, and pia 
mater. Recently, a fourth meningeal layer has been described. 
This new Subarachnoid Lymphatic-Like Membrane (SLYM) 
encases blood vessels and immune cells [8]. SLYM is closely 
associated with the endothelial lining of the meningeal venous 
sinus. This permits the direct exchange of small solutes 
between cerebrospinal ϐluid and venous blood [9]. Recently, 
a calvarial hematopoietic niche was discovered in a distinct 
region of the skull. This acts as a myeloid cell reservoir to 
the underlying meninges [9]. The inner skull of the cortex 
contains vascular channels. These provide a passageway for 
cells and cerebrospinal ϐluid-derived antigens between the 
skull and the brain parenchyma [9]. 

Throughout the CNS parenchyma, a tightly controlled 
microglia network facilitates efϐicient immunosurveillance 
[10]. Each cell is constantly surveilling its microenvironment. 
During tissue surveillance, microglia screen for pathogens, 
remove cell debris and metabolites, groom neighboring cells, 
and facilitate cellular crosstalk [10]. This is an essential process 
for CNS homeostasis and development [11]. Also, microglia 
continuously monitor and sculpt synapses, thereby allowing 
for the remodeling of brain circuits [12]. Such glia-mediated 
neuroplasticity is driven by neuronal activity. It is controlled by 
various feedback signaling mechanisms and crucially involves 
extracellular matrix remodeling [12]. Molecular signatures of 
homeostatic microglia and disease-associated microglia have 
provided insights into how these cells are regulated in health 
and disease and how they contribute to the maintenance of 
the neuronal environment [13]. 

Astrocytes were recently demonstrated to communicate 
with neurons and to mediate glutamatergic gliotransmission 
in the CNS [14]. Nine molecularly distinct clusters of 
hippocampal astrocytes were identiϐied by single-cell RNA-
sequencing and patch-seq data analysis [14]. A specialized 
subpopulation selectively expressed a synaptic-like 
glutamate-release machinery and was localized to a discrete 
hippocampal site [14].

Neuropathologies and interventions

i. In primary CNS lymphoma, recent studies have 
highlighted the excellent disease control afforded by 
high-dose chemotherapy and stem cell transplantation 
[15]. Also, chemoimmunotherapy with methotrexate, 

cytarabine, thiotepa, and rituximab (MATRix regimen) 
achieved impressive increases in complete remission 
rates [16]. 

ii. For Glioblastoma Multiforme (GBM), an orphan 
disease, an immune landscape has been described 
as a double-edged sword for treatment [17]. On one 
hand, there are the immunosuppressive effects of 
tumor cells and myeloid immune cells on the tumor 
microenvironment, while on the other, there are the 
immune-stimulatory effects of lymphocyte responses 
against the glioma cells [17]. Clinical and translational 
advances in malignant glioma immunotherapy have 
been summarized recently [18,19]. The reviews include 
vaccine-based therapies, adoptive cell therapies, 
oncolytic virus therapy, and technical innovation 
[18,19]. The overall survival of IDH1 wild-type MGMT 
promoter-unmethylated GBM could be improved by 
a synergy between temozolomide chemotherapy and 
individualized multimodal immunotherapy [20]. The 
concept of randomized controlled immunotherapy 
clinical trials for orphan diseases like GBM has 
been challenged [21] and compared to the evidence 
obtained by real-world patient data from individualized 
medicine [22]. 

iii. Neuro-degenerative and neuro-autoimmune diseases 
are inϐluenced and affected by the immune system. 
The immune system is involved in neurodegenerative 
diseases such as Alzheimer’s Disease (AD), Parkinson’s 
Disease (PD), and amyotrophic lateral sclerosis (ALS) 
[23]. CD4+ T cells, CD8+ T cells, and regulatory T cells 
(Tregs) play an important role in cerebral infarction 
and autoimmune diseases of the CNS, such as Multiple 
Sclerosis (MS), N-Methyl-D-Aspartate (NMDA) receptor 
encephalitis, and narcolepsy (23). An important auto 
(self)-antigen of the CNS is Myelin Oligodendrocyte 
Glycoprotein (MOG) [24].

iv. Ischemic stroke involves complex interactions between 
neuronal, glial, and immune cell subsets across multiple 
immunological compartments. These include the 
blood-brain barrier, the meningeal lymphatic vessels, 
the choroid plexus, and the skull bone marrow [25].

v. From Alzheimer’s models, it was reported that neuronal 
expression of a single-chain antibody selective for Aß 
oligomers protects synapses and rescues memory [26].

vi. New diagnostic tools. Immuno-positron emission 
tomography (immunoPET) is a non-invasive in vivo 
imaging method based on tracking and quantifying 
radiolabeled monoclonal antibodies [27]. ImmunoPET 
could be a new approach to developing more speciϐic 
PET probes directed to different brain targets [27].

vii. Extracellular vesicles. Neural-derived and immune-
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Because the BM is of great importance for general health, 
new drug approvals should minimize detrimental drug 
effects on the BM. Among the available immunotherapeutic 
drugs, the most important are immune checkpoint inhibitors, 
anti-cancer vaccines, oncolytic viruses, and adoptive T-cell 
therapies. All of these have to be assessed with regard to their 
side effects on the BM. 

Examples are given for neuropathologies and 
immunological interventions. This area of research is 
considered in the future of great medical relevance.
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