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Abstract

The purpose of this work is to implement methods and develop tools for nonlinear dynamic 
identifi cation of the Oculomotor System (OMS) “input-output” in the form of Multidimensional 
Transient Functions (MTF) based on eye tracking data and their use in an information system 
for diagnosing the psychophysiological state of a person. The object of the study is the process 
of diagnosing the psychophysiological state of an individual based on innovative eye-tracking 
technology. The subject of the research is computational algorithms and software for determining 
diagnostic features based on identifi cation data of compulsory medical insurance in the form 
of MTF, constructing a Bayesian classifi er using machine learning in the established space of 
the most informative features. A methodology has been developed and implemented for the 
experimental study of human compulsory mental health using innovative eye-tracking technology 
to record compulsory mental health responses to test visual stimuli. The obtained empirical data 
from input-output studies are used for the identifi cation of OMS based on Volterra polynomials. 
Experimental studies of compulsory medical insurance of respondents were carried out before 
and after the working day. Based on the data obtained using the Tobii Pro TX300 eye tracker, the 
transient functions of the fi rst, second, and third orders of the OMS were determined. Variability of 
second and third order transient functions was revealed for diff erent psychophysiological states 
of the respondent (normal or fatigue). Thus, it seems appropriate to use MTF in diagnostic studies 
in the fi elds of neuroscience and psychology. Information technology for diagnosing human 
psychophysiological conditions has been further developed through the use of compulsory 
health insurance information models based on Volterra polynomials as a source of primary data. 
This allows for an increase in the accuracy of OMS modeling and, consequently, enhances the 
reliability of diagnosis within the framework of the proposed heuristic features. A set of heuristic 
features is proposed, which are determined using integral and diff erential transformations of 
the MTF OMS. The information content of individual features and all possible combinations of 
them in pairs was studied using the Probability of Correct Recognition (PCR) indicator. Two-
dimensional feature spaces with the maximum PCR value (0.938) were identifi ed during the 
diagnosis of a person’s psychophysiological state.

Introduction
Military operations and natural disasters occurring today 

have a great impact on the psychophysiological state of a 
person. A signiϐicant number of people receive psychological 
trauma of varying degrees, which often leads to Post-Traumatic 
Stress Disorder (PTSD) and require constant psychological 
support and assistance. Because PTSD is a complex disorder 
that manifests itself simultaneously on psychological, 
biological, and social levels, treatment, depending on its 
depth, includes psychotherapy and sometimes the use of 
psychopharmacological drugs. The OMS model proposed by 
us allows us to determine the presence of PTSD syndrome, 
as well as to obtain a quantitative assessment of the depth of 

PTSD and, based on these studies, to choose the most effective 
treatment tactics. Modern PTSD care protocols recommend 
two psychotherapeutic methods: Cognitive Behavioral 
Therapy (CBT) and Eye Movement Desensitization and 
Reprocessing (EMDR). That is why it is important to diagnose 
the psychophysical condition of the person.

Studies of human eye movements and the trajectory 
of their movement allow us to reveal the structure of the 
individual’s relationship with the environment [1,2]. Analysis 
of the relationship between the oculomotor and the central 
nervous system, with the content of mental processes, with 
various forms of activity (behavior, activity, communication), 
contributes to the study of the mechanisms of brain work 
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and their disorders, the identiϐication of the dynamics of 
psychophysiological states of a person, patterns of perception, 
thinking, ideas, differentiation personal intentions [3,4].

In recent years, the high-tech innovation of eye-tracking 
has received further development and effective application 
in the construction of a mathematical model of the process 
of continuous eye movement tracking in order to detect 
anomalies in the tracking data for the quantitative assessment 
of motor symptoms of Parkinson’s disease [5,6]. At the same 
time, nonlinear dynamic models of Wiener and Volterra-
Laguerre [7] are used, and the identiϐication of the Oculomotor 
System (OMS) is based on the use of test random effects, 
which requires the use of correlation analysis methods and 
obtaining a large amount of experimental data (long duration 
of experimental studies).

To build the Volterra model of the human OMS, 
deterministic test effects can be used, for example, step signals 
(most suitable for studying the dynamics of OMS) [8,9], which 
will simplify the computational identiϐication algorithm and 
signiϐicantly reduce the time of experimental data processing 
[10,11].

In work [12] a method of deterministic identiϐication of 
OMS in the form of Multidimensional Transient Functions 
(MTF) using step test signals was developed, similar to the 
compensatory method of identiϐication of nonlinear dynamic 
systems using impulse test signals [13]. Although the method 
requires a minimum number of test signals to identify OMS, 
its accuracy is insufϐicient for constructing Volterra models 
of more than second order, which hinders its practical 
application.

The advantages of deterministic methods in comparison 
with methods of statistical identiϐication are the comparative 
ease of processing experimental data and implementing test 
signals. However, the results of deterministic identiϐication 
are signiϐicantly affected by measurement errors [14]. 
The obtained estimates of the transient characteristics are 
unstable to the measurement errors of the OMS responses, 
which limits the application of the methods in the conditions 
of a real experiment.

The analysis of literary sources showed that, at the 
moment, no effective methods of building OMS models 
based on the Volterra polynomial based on experimental 
data obtained by eye-tracking have been developed. There 
is no proper instrumental, algorithmic, and software tools to 
support methods of identiϐication of OMS using eye-tracking 
technology.

There is a need to increase the accuracy and computational 
stability of the assessment of multidimensional transient 
functions of OMS, to develop hardware and software tools 
for controlling the identiϐication process, as well as to create 
information technology and intelligent computing systems 

for classiϐication in the space of features determined by the 
results of OMS identiϐication based on eye-tracking data.

The purpose of this work is to implement methods and 
means of nonlinear dynamic identiϐication “input-output” 
of the OMS based on eye-tracking data based on Volterra 
models in the form of multidimensional transient functions 
and their application in information systems for diagnosing 
the psychophysiological state of a person, which expand the 
diagnostic capabilities of tools state assessment information 
technology.

OMS identifi cation of OMS based on the discrete 
Volterra polynomial

The “input-output” ratio for a nonlinear dynamic system 
with an unknown structure (like a “black box”) with one input 
and one output can be represented by a discrete cubic Volterra 
polynomial in the form [15]:

3
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Where w1[k1], w2[k1,k2], w3[k1,k2,k3] are discrete weight 
functions (Volterra kernels) of the 1st, 2nd, and 3rd orders; 
х[m], y[m] are input (stimulus) and output (response) 
function (signals) of the system, respectively; yn[m] is partial 
components of the response (convolution of n-th order 
sequences wn[k1,…,kn] and х[m]); m is a discrete time variable.

ˆˆ [ ] [ ,..., ] [ , ..., ] , 1, 2, 3.1,..., 01

m
y m h m m w m k m k nn n n nk kn

    
       (2)

Multi-step test signals with different amplitudes aj (j = 
1,2,…,L; L is the number of experiments, L ≥ N) xj(t) = ajθ(t) 
are used for identification [16]. The responses of the OMS, 
which are measured at the same time, will be denoted as 
y1[m], y2[m],…, yL[m]. If we determine the partial response 
components of the model ][ˆ1 my , ][ˆ2 my , ][ˆ3 my then this will 
lead to the estimation of the transient functions of the ϐirst 

order ][1̂ mh and the diagonal intersections of the transient 

functions ],[ˆ
2 mmh , ],,[3̂ mmmh  (2).

The responses of the Volterra polynomial model are equal
2ˆ ˆ ˆ[ ] [ ] [ ] ... [ ]1 2

Ny m a y m a y m a y mi i i i N    , i = 1, 2, …, L; N 

= 1, 2, 3.  (3)

To determine the transient functions
ˆ ˆ ˆ[ ], [ , ], [ , , ]1 2 3h m h m m h m m m , the Method of Least Squares 

(LSM) [16] is used, which provides a minimum of the root 
mean square error of the deviation of the model responses 
from the OMS responses to the same stimulus: 
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measurements L is large enough (much greater than the degree 
of the approximating polynomial N) or the measurement errors 
are small. Otherwise, the determinant of the system turns out 
to be close to zero, and the system becomes indeterminate. 
In this case, large errors in the estimation of the parameters 
of the approximating polynomial are possible. To obtain a 
solution of SLAE (6) resistant to measurement errors, the 
regularization method of A.N. Tikhonov is used [17,18]. 

The Tikhonov regularization method is based on the 
variational method of constructing the regularizing operator. 
It is used to obtain a measurement error-tolerant solution 
for a system of linear algebraic equations (5). This method 
boils down to ϐinding an approximate solution vector that 
minimizes a certain smoothing functional. The only vector 
satisfying the minimum condition of the smoothing functional 
can be determined from the solution of the system of linear 
algebraic equations:

(  A + ) aA y A y   ,                  (10)

Where A′ is the transposed matrix; I is the identity matrix; 
α is the Tikhonov regularization parameter.

When implementing this algorithm, the regularization 
parameter α is chosen sufϐiciently small from the analysis of 
the available information about the error of the initial data 
and the calculation error. In the work, the appropriate value 
of the regularization parameter α is determined by selection, 
i.e. repeated calculations ŷ , for different values of α. The 
quasi-optimal value of the parameter α = α0 is selected from 
the condition

1ˆ ˆ|| y y || mini i    ,                    (11)

Where ,   0 1,   0,1, 2, ..1 iii      . It should be 

noted that different ways of determining the regularization 
parameter can give different results and, as a consequence, 
different regularized solutions.

Experimental studies of OMS using eye-tracking and 
calculation of the MTF

With the help of the developed software, a study of the 
psychophysiological states of a person was carried out. The 
experiments were organized in order to classify the subjects 
(informants) according to their state of fatigue.

Data for building OMS models – OMS responses to the 
same test visual stimuli with different distances хj (j = 1, 2, 3) 
from the starting position, which formally corresponds to test 
signals with amplitudes a1, a2 and a3, obtained using the Tobii 
Pro TX300 eye tracker at different times of the day: “In the 
Morning” (before work) and “In the Evening” (after work) and 
on different days. One complete cycle of OMS research for one 
respondent consists of 3 experiments at different amplitudes 
of test signals a1, a2, and a3 for the “In the Morning” state and 
for the “In the Evening” state. The graphs of OMS responses 
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The minimization of criterion (4) is reduced to the solution 
of the system of normal Gaussian equations, which in vector-
matrix form can be written as

ˆA Ay A y  ,                     (5)
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After solving the system of equations (5) with 
respect to ˆ ˆ ˆ[ ], [ ], [ ]1 2 3y m y m y m , we obtain estimates 

of the multidimensional transient functions 
ˆ ˆ ˆ[ ], [ , ], [ , , ]1 2 3h m h m m h m m m в of the OMS at each moment of 

time m in the observation interval. From equation (5), we get

1ŷ (A A) A y  .                        (6)

After performing the matrix operations in (6), we get
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Thus, for the model based on the cubic Volterra polynomial 
for N = 3 (1), we can estimate the transient functions of the 

ϐirst (3)ˆ [ ]1h m , second (3)ˆ [ , ]2h m m  , and third (3)ˆ [ , , ]3h m m m orders 
(7).

Similarly, we obtain the formulas for evaluating the ϐirst-

order transient functions (1)ˆ [ ]1h m  – at N = 1; of the ϐirst and 

second orders (2)ˆ [ ]1h m , (2)ˆ [ , ]2h m m  – at N = 2:

[ ]
1(1) (1)ˆ ˆ[ ] [ ]1 1 2

1

L
a y mj jj

h m y m L
a jj




 

                       

(8)

1
2 3(2)(2) [ ]ˆ ˆ [ ][ ] 1 1 111

(2) (2) 3 4 2ˆ [ , ] ˆ [ ] [ ]2 2 1 1 1

L L L
a a a y mj j j jy mh m j j j

L L Lh m m y m a a a y mj j j jj j j


  
  

  
  
  

                           .    

(9)

The system of normal Gaussian equations (6) gives good 
results for the approximation of functions if the number of 
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received for “In the Morning” and “In the Evening” were 
brought to the common beginning (starting point) and shown 
in Figure 1.

According to the OMS responses based on calculations 
using formulas (7) – (9), the transient functions of the OMS 
“In the Morning” and “In the Evening” were determined when 
using approximation models of various degrees of N (N = 1, 2, 

3): with N = 1 – ][ˆ )1(
1 mh  (8); with N = 2 – (2)ˆ [ ]1h m  and (2)ˆ [ , ]2h m m  

(9); with N = 3 – (3)ˆ [ ]1h m , (3)ˆ [ , ]2h m m  and (3)ˆ [ , , ]3h m m m  (7).

The graphs of the transient functions of the OMS and the 
corresponding responses of the OMS based on the model at 
N = 1 (3) at different amplitudes of the input signals for the 
state of the respondent “In the morning” and “In the evening” 
are shown in Figures 2,3. 

The normalized Root Mean Square Errors (RMSE) of the 
OMS model at N = 1 were calculated for different amplitudes of 
input signals a1, a2, and a3 for the states of the respondent “In 

Figure 2: Transient functions of the OMS models at N=1 for the state of the 
respondent “In the Morning” and “In the Evening”.

Figure 1: OMS responses at diff erent amplitudes of test signals.

Figure 3: Responses of the OMS models at N = 1 for diff erent amplitudes of test 
signals “In the Morning” and “In the Evening”.

the Morning” and “In the Evening”, which are given in Table 1. 
Similar results were obtained based on the model with N = 2 
and are shown in Figures 4,5 – for the state of the respondent 
“In the Morning” and “In the Evening”, as well as based on the 
model with N = 3 and shown in Figures 6,7 – for the state of 
the respondent “In the Morning” and “In the Evening”. RMSE 
of the OMS model at N = 2 for different amplitudes of input 
signals a1, a2, and a3 for the states of the respondent “In the 
Morning” and “In the Evening”, which are given in Table 2. 
RMSE of the OMS model at N=3 for different amplitudes of 
input signals a1, a2, and a3 for the states of the respondent “In 
the Morning” and “In the Evening”, which are given in Table 3.

Research results
To assess the psychophysiological state of an individual 

based on the OMS model in the form of ϐirst-order t transient 
functions h1(m), and diagonal intersections of second and 
third order transient functions h2(m,m) and h3(m,m,m), 
training data samples were formed for the two states of the 
respondent using the proposed heuristic features determined 
on the basis of the obtained MTF. Training data samples are 
used to build classiϐiers of the psychophysiological states 
of an individual using machine learning tools [19,20]. A 
psychophysiological state classiϐier was built on the basis of the 
training set of data for objects of classes Ω1 (“In the Morning” 
– 8 complete research cycles) and Ω2 (“In the Evening” – 8 
complete research cycles). To recognize objects of two classes 
(the case of dichotomy), the shifted discriminant function of 
the Bayesian species classiϐier is used [21,22]: 

1 1 1 1 1( ) ( ) ( )2 1 1 1 2 22

| |1 1 1 2( ln ) max1 1 1 2 2 22 | |1


       

     
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S
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(12)
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object classiϐication threshold, which ensures the maximum 
value of the criterion of the Probability of Correct Recognition 
(PCR).

The analysis of the reliability of the classiϐication of 
psychophysiological states in the space of the proposed 
features consists of the formation of all possible combinations 
of features and the assessment of their informativeness, which 
is based on the results of the classiϐication of the studied 
sample of data using the PCR criterion [20]. Thus, all possible 
pairs of features were investigated by the method of complete 
search.

Bayesian classiϐier of psychophysiological states in the 
two-dimensional space of features, which provides the 
maximum PCR Pmax = 0.938 for the following combinations of 
features, which are determined on the basis of the Volterra 
model at N = 3:

'[ , , ] & min [ , ]3 3 12 20 [0, ]

M
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m m M
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Table 1: RMSE of the OMS model at N = 1.

The state of the respondent
Amplitudes of input signals
a1 a2 a3

"In the Morning" 0.0468 0.0185 0.0193
"In the Evening" 0.0670 0.0215 0.0162

Figure 4: Transient functions of the OMS models at N = 2 for the state of the 
respondent “In the Morning” and “In the Evening”.

Figure 5: Responses of the OMS models at N = 2 for diff erent amplitudes of test 
signals “In the Morning” and “In the Evening”.

Table 2: RMSE of the OMS model at N = 2.

The state of the respondent
Amplitudes of input signals
a1 a2 a3

"In the Morning" 0.0230 0.0230 0.0077
"In the Evening" 0.0379 0.0379 0.0126

Table 3: RMSE of the OMS model at N = 3.

The state of the respondent
Amplitudes of input signals

a1 a2 a3

"In the Morning" 8.5055e-15 6.6127e-15 8.3227e-15
"In the Evening" 1.4341e-14 8.5165e-15 1.0437e-14

Where x = (x1,x2,…,xn)’ is a vector of features, n is 
the dimension of the space of features, mi is a vector of 
mathematical expectations of features of class i, i = 1, 2; 
Si = M[(x-mi)(x-mi)’] is the covariance matrix for class i (M [] 
is a mathematical expectation operation); 1Si

 is the matrix 
inverted to Si, |Si| is the determinant of the Si matrix, λmax is the 
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or
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An analysis of the stability of the indicator of 
informativeness of different feature spaces was carried out. 
For this, random samples with a Gaussian probability density 
distribution were created, where the standard deviation of 
the distribution is equal to the product of the mean value of 
the feature vector at the noise level (1% and 5%). The results 
of the PCR stability analysis are presented in Figure 8, Table 4.

Therefore, the most interference-resistant combinations of 
features according to the PCR Pmax indicator at a noise level of 
1% are: (x3, х14), (х9, х6), (х13, х6), (х13, х10), (х12, х14) (highlighted 
in Table 1); at a noise level of 5% – (х9, х10). Figure 9 shows 
the location of objects of the training set in the feature space 
(х9, х10).

Figure 8: PCR for classifi ers in the spaces of selected features when the features 
are aff ected by diff erent levels of noise.

Figure 9: The location of objects of the training set in the feature space (х9, х10).

Table 5: Metrics for evaluating the eff ectiveness of classifi ers constructed in two-
dimensional feature spaces using SVM.

Metrics x5 & x15 x9 & x10 x13 & x10

Error Type I, α 1 2 2
Error Type II, β 1 1 1

PCR, 
TP TN

TP FP FN TN



  
0.875 0.813 0.813

Recall, 
TP

TP FN
0.875 0.875 0.875

Precision, 
TP

TP FP
0.875 0.778 0.778

F1- Score, 
2 * *precision recall

precision recall
0.875 0.824 0.824

Table 4: Average values of PCR (%) for classifi ers in feature spaces with diff erent 
levels of additive noise.

Feature combinations
Noise level, %

0 1 5
х3, х12 93.75 91.25 77.50
x3, х14 93.75 93.75 91.25
х5, х11 93.75 92.19 85.00
х5, х15 93.75 91.25 90.00
х9, х6 93.75 93.75 87.50
х9, х10 93.75 93.75 93.75
х13, х6 93.75 93.75 87.50
х13, х10 93.75 93.75 90.63
х6, х8 93.75 91.25 87.50
х12, х14 93.75 93.75 85.00

Figure 6: Transient functions of the OMS models at N = 3 for the state of the 
respondent “In the Morning” and “In the Evening”.

Figure 7: Responses of the OMS models at N = 3 for diff erent amplitudes of test 
signals “In the Morning” and “In the Evening”.
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For individual signs, we have the following values of the 
PCR criterion: x9, x13 – Pmax = 0.625; x3 – Pmax = 0.688; x12 – Pmax = 
0.75; x6, x10, x14 – Pmax = 0.813.

Support Vector Machine (SVM) was also used to build 
the classiϐier [21]. The best results of the evaluation of the 
efϐiciency of classiϐiers, built using SVM, were obtained in the 
feature spaces (x5,x15), (x9, x10), (x13, x10) and are shown in Table 
2. In this case, SVM using a second-order kernel is used:

   x,x x,x 1
d

K                        (23)

Where d is speciϐied by parameter degree, d = 2. Calculation 
of indicators from Table 5 [19] was obtained using the Scikit-
learn library (sklearn.svm.SVC class) and functions of the 
sklearn.metrics module.

Conclusion
The methodology of experimental studies of human OMS 

using innovative eye-tracking technology for registration 
of OMS responses to test visual stimuli was developed and 
implemented. The obtained empirical data of the “input-
output” studies are used to identify the OMS based on Volterra 
polynomials. Experimental studies of the respondent’s OMS 
were carried out before and after the working day. Based on 
the data obtained with the Tobii Pro TX300 eye tracker, the 
transient functions of the ϐirst, second, and third orders of the 
OMS were determined. The variability of second-and third-
order transient functions for different psychophysiological 
states of the respondent (by level of fatigue) was revealed. 
Thus, it seems appropriate to use multidimensional transient 
functions in diagnostic studies in the ϐields of neuroscience 
and psychology.

The information technology for diagnosing human 
psychophysiological states has received further development 
due to its use as a source of primary data for OMS information 
models based on Volterra polynomials. This allows for an 
increase in the accuracy of OMS modeling and, as a result, 
increases the reliability of diagnosis in the space of the 
proposed heuristic features.

A set of heuristic features is proposed, which are 
determined using integral and differential transformations of 
the MTF of the OMS. The informativeness of individual signs 
and all their possible combinations in pairs according to the 
PCR indicator was studied. Two-dimensional feature spaces 
with the maximum value of the PCR indicator were found 
when solving problems of assessing the psychophysiological 
state (fatigue state) of a person (Pmax = 0.938).
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