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Introduction
Ischemia-Reperfusion Injury (IRI) is a complex 

pathological issue that poses signiϐicant challenges in various 
medical ϐields, including cardiovascular surgery, stroke 
therapy, emergency medicine (particularly after a heart 
attack), cardiorespiratory resuscitation, neonatology, sepsis, 
and organ transplantation [1]. Ischemic injury refers to the 
condition evolving when a tissue area is cut short of blood 
ϐlow, leading to a lack of oxygen and nutrients. This happens 
in stroke, myocardial infarction, and other thromboembolic 
events. Ischemic injury can also occur during surgery when 
arteries are cross-clamped and in organs intended for 
transplantation. In the end, prolonged deprivation of blood 
supply results in necrotic cell death. 

Restoration of circulation is vital for tissue survival and 
mitigates the ischemic damage, but paradoxically it may cause 
extra harm known as reperfusion injury. This sequela is due 
to the activity of free radicals (i.e., reactive oxygen species 

of the oxidative stress) since the protective antioxidant 
mechanisms got compromised during the ischemic period. 
Eventually, oxidative stress leads to apoptotic cell death 
mediated by a cytokine storm. IRI is the term for the outcome 
of these combined pathological processes. 

The sequence of events occurring in IRI

IRI is a phenomenon that involves multiple steps and 
factors in its pathomechanism [2,3]. Ischemia causes a 
deϐiciency of oxygen and nutrients, resulting in a decrease 
in oxidative metabolism, buildup of waste products, and 
depletion of high-energy phosphates. Among these, the core 
process is the decrease in cellular oxidative phosphorylation. 
Due to the insufϐicient oxygen supply the energy support 
of cellular homeostasis declines, since the mitochondrial 
respiration and consequently the endoplasmic reticulum 
machinery becomes deϐicient. Ischemia alters the equilibrium 
of ions since the decrease in high-energy phosphates leads 
to the dysfunction of ATP-dependent membrane ion pumps, 
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Abstract 

Ischemia-Reperfusion Injury (IRI) is the outcome of two intertwined pathological processes 
resulting from the shortage of blood ϐlow to tissues and the subsequent restoration of circulation 
to a previously ischemic area. IRI (sometimes just one side of the dyad) remains one of the most 
challenging problems in several branches of emergency medicine. Mitochondrial and endoplasmic 
reticulum dysfunction is a crucial pathological factor involved in the development of IRI. 

The sigma-1 receptor (Sig1-R) is an intracellular chaperone molecule located between the 
mitochondria and endoplasmic reticulum with an apparent physiological role in regulating signaling 
between these cell organelles and serves as a safety mechanism against cellular stress. Therefore, 
amelioration of IRI is reasonably expected by the activation of the Sig1-R chaperone. Indeed, under 
cellular stress, Sig1-R agonists improve mitochondrial respiration and optimize endoplasmic 
reticulum function by sustaining high-energy phosphate synthesis. 

The discovery that N, N-dimethyltryptamine (DMT) is an endogenous agonist of the Sig1-R 
may shed light on yet undiscovered physiological mechanisms and therapeutic potentials of this 
controversial hallucinogenic compound. In this article, the authors brieϐly overview the function 
of Sig1-R in cellular bioenergetics with a focus on the processes involved in IRI and summarize the 
results of their in vitro and in vivo DMT studies aiming at mitigating IRI. The authors conclude that the 
effect of DMT may involve a universal role in cellular protective mechanisms suggesting therapeutic 
potentials against different components and types of IRIs emerging in local and generalized brain 
ischemia after stroke or cardiac arrest.

https://crossmark.crossref.org/dialog/?doi=10.29328/journal.jnnd.1001097&domain=pdf&date_stamp=2024-04-19
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resulting in calcium, sodium, and water influx to the cells. 
Under special circumstances and for a limited period the cells 
adapt by utilizing anaerobic pathways. The accumulation 
of lactate caused by anaerobic metabolism leads to a drop 
in intracellular pH [4]. Ultimately, as a result of insufϐicient 
aerobic metabolism, the reserves of high-energy phosphates 
become exhausted leading to endoplasmic reticulum stress. 
Sustained perturbation of the endoplasmic reticulum results 
in prolonged unfolded protein response which triggers lethal 
cellular events. The membrane functions to break down, 
and the compartment-lesion of cellular organelles leads to 
necrotic cell death [5]. 

Once blood ϐlow is reestablished, the aerobic metabolism 
restarts. An abrupt increase in oxygen delivery to the tissue 
can cause an accumulation of reactive oxygen species 
(such as hydrogen peroxide, superoxide, hydroxyl radical, 
and singlet oxygen) due to the stressed, overwhelmed 
antioxidant system. Oxidative cell damage occurs including 
lipid peroxidation. The initial stage of reperfusion injury 
is primarily characterized by the appearance of damage-
associated molecular patterns. These elements trigger the 
inϐlammatory transcription factor NF-ĐB [6]. The subsequent 
release of pro-inϐlammatory cytokines, such as IL-1, IL-8, and 
TNF-α, add to the harm produced by reactive oxygen species 
and other free radicals during reperfusion. The induced 
inϐlammatory response involves the recruitment of immune 
cells, speciϐically neutrophils and macrophages, which then 
attack the reperfused tissue. Reperfusion promotes the entry 
of calcium into cells, with subsequent activation of several 
enzymes and adhesion factors that contribute to apoptosis 
[7]. 

The immune mechanisms and pathways involved in this 
process also encompass the disruption of glial cell functions 
in the brain, the entry of circulating peripheral leukocytes 
into both the central nervous system and peripheral tissues, 
and the overactivation of tissue-resident immune cells. The 
released cytokines exert systemic effects and cause distant 
damage to the lungs and other organs. Reperfusion injury 
can impair endothelial function, resulting in increased 
vascular permeability, leukocyte adhesion, and blood clot 
formation. These further compromise tissue perfusion 
and function. Reperfusion can increase the mitochondrial 
disfunction caused by ischemia, aggravate the impairment 
of cellular energy production, and intensify oxidative stress. 
The primary agents engaged in the detailed process include 
inϐlammatory cytokines and chemokines, adhesion factors, 
reactive oxygen species, and nitric oxide [8]. Most of the 
injury caused by ischemia-reperfusion occurs during the 
reperfusion phase and is mediated by the immune system 
[9]. In summary, tissue damage is determined primarily by 
the magnitude and duration of the ischemia, but in addition, 
a very signiϐicant injury develops during the subsequent 
reperfusion [2,3]. 

Therapeutic approaches against IRI

Due to its wide occurrence in different medical ϐields, IRI 
has become a common clinical concern, and its prevention or 
mitigation is an area of great clinical interest [4]. Strategies to 
reduce IRI include pre-conditioning the tissue to make it more 
resistant to the lack of oxygen, pharmacological methods 
targeting oxidative stress (by facilitation of free radical 
defense mechanisms, administering radical scavengers, 
metal chelators), inϐlammation (by administration 
of IL-1 receptor antagonist, soluble TNF-α receptors, 
antibodies against IL-1, TNF-α or adhesion molecules), and 
interventions aimed at preserving mitochondrial function. 
Additionally, techniques such as inducing hypothermia, 
gradual reperfusion, and remote ischemic conditioning 
have shown promise in reducing IRI in various clinical 
settings [10]. In organ transplantation many attempts have 
been made to reduce cold ischemia time, to develop better 
perfusion fluid, and to create a new perfusion technique 
[11]. Since IRI is damaged due to hypoxia and inϐlammatory 
cascade, a simple pharmacological intervention targeting 
both factors—each one on the ischemic or reperfusion 
side—may have clinically signiϐicant therapeutic potential. 
In this article, we demonstrate that activating the sigma-1 
receptor (Sig-1R) with the external administration of one of 
its natural ligands, namely the endogenous hallucinogen N, 
N-dimethyltryptamine (DMT) offers a powerful tool against 
each component of IRI. 

The Sig-1R chaperone

The Sig-1R molecule is an intracellular chaperone 
positioned in the Mitochondria-Associated Membranes 
(MAMs), which are placed between the endoplasmic 
reticulum and mitochondria. Its gene is expressed in many 
tissues, especially in the central nervous system [12]. The 
Sig-1R regulates Ca2+ signaling and serves a function in 
protecting against endoplasmic reticulum stress [13-15]. 
The conceptualization of Sig1-R as an important factor 
in protein maturation and modiϐication is emerging [16], 
and points toward its involvement in the unfolded protein 
response. Normally, Sig-1R is in a less active state [17-19]. 
During extended cellular stress, the activation of Sig-1R 
moderates the pathways that lead to cell death by apoptosis 
[5]. The reduced activity of Sig-1R hampers the detection 
of endoplasmic reticulum stress prevents the activation of 
unfolded protein response, and consequently decreases 
cell survival by poorly interacting with the mitochondrion-
endoplasmic reticulum-nucleus signaling mechanisms [20]. 
Sig-1R agonists improve mitochondrial function by preserving 
mitochondrial respiration, enhancing mitochondrial calcium 
uptake, and sustaining high-energy phosphate synthesis to 
optimize endoplasmic reticulum function [21-23]. 

The role of Sig-1R in cell survival

The activity of Sig-1R at the MAM helps cells survive by 
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can be beneϐicial, and data is available about its increased 
expression in different causes of death—particularly under 
hypoxic conditions [43]. We advise, that the conventional 
conceptualization of DMT as predominantly a serotonergic 
hallucinogen is too biased and limited in attributing to it 
solely a psychopathogenic function. In a previous paper [42] 
we emphasized that the Sig-1R action of DMT could provide 
valuable and relevant information regarding its potential 
physiological and clinical effects. DMT has a modest afϐinity 
for Sig-1R, with a KD value of 14.8 μM [31]. This suggests 
that larger quantities of DMT are required to fully saturate 
the Sig-1R receptor compared to its lower KD at the 5-HT 
receptor subtypes. Nevertheless, due to the co-localization of 
the DMT synthesizing indolethylamine N-methyltransferase 
enzyme and Sig-1R in neural tissue [44], it is possible that 
physiologically signiϐicant concentrations can be achieved 
at the Sig-1R site. No higher potency endogenous ligand for 
the Sig-1R has been identiϐied yet, therefore DMT has been 
postulated as a noteworthy molecule [31,45]. 

Possible physiological and/or therapeutic roles of DMT

Since the Sig-1R alleviates endoplasmic reticulum stress 
[46], improves neuronal survival against oxidative stress 
[24], regulates immune processes [47], ameliorates IRI [48], 
induces autophagy [49-51], and provides neuroprotection 
[52,53], it is reasonable to ascribe a similar function to DMT 
[42]. Given that Sig-1R is recognized for its role in regulating 
the morphogenesis of neuronal cells, including processes 
like neurite outgrowth, myelination, and synaptogenesis; 
neuroregeneration [54] can plausibly be expected by its 
activation with DMT. In a study conducted by Dakic, et al. 
[55], it was found that in brain organoids 5-MeO-DMT (a 
compound closely related to DMT) positively inϐluenced 
neuroplasticity and neuroprotection, maturation of dendritic 
spines, while inhibited factors involved in neurodegeneration 
and apoptosis. In a rodent model, DMT reduced reactive 
oxygen species production, inϐlammatory gene expression 
caused by predator exposure/psychosocial stress, and 
modulated neuroplasticity-related genes [56]. In our paper 
[42] we concluded that the function of DMT may involve a 
universal role in different tissue protective mechanisms—
not solely brain-related. This theoretical paper was followed 
by experimental studies wherein the Sig-1R-mediated anti-
inϐlammatory [57] and anti-hypoxia effects [58] of DMT were 
veriϐied in vitro. 

In vitro studies indicating Sig-1R mediated eff ect of 
DMT against infl ammation and hypoxia

In our ϐirst experiment [57] we evaluated the effect of 
DMT, its derivative 5-MeO-DMT, and the synthetic Sig-1R 
agonist PRE-084 on inϐlamed human primary monocyte-
derived dendritic cells. This was performed after inducing 
inϐlammation using lipopolysaccharide, polyI: C, or pathogen-
derived stimuli. Our study revealed that administering 
these Sig-1R agonists suppressed the production of pro-

regulating the inϐlux of Ca2+ from the endoplasmic reticulum 
to the mitochondria. This process helps reduce endoplasmic 
reticulum stress. At the same time, it alleviates the harmful 
effects of free radicals through the Nrf2-antioxidant response 
element signaling [24,25]. Sig-1R agonists facilitate the 
translocation of this receptor from the MAM to the plasma 
membrane. The translocation of Sig-1R supports the 
regulation of many membrane-bound or cytosolic functional 
elements, for example, metabotropic receptors, ion channels, 
and protein kinases. Another translocation of Sig-1R from the 
MAM to the nucleus membrane provides interference with 
the transcriptional regulation of genes [26]. Possessing both 
chaperone and receptor function, and due to the versatility of 
its targets, the Sig-1R represents a pluripotent modulator in 
living systems and is involved in the etiopathology of many 
diseases [27-29]. 

The pharmacology of Sig-1R

Sig-1R has a unique and distinctive history. Initially, it 
was classiϐied as a member of the opioid receptor family. 
Later on, it was considered to belong to the orphan receptor 
group [30] for which no endogenous ligand was known—
until the discovery that DMT is its endogenous agonist 
[31]. Nowadays, Sig-1R is considered to be a non-G-protein 
coupled, nonionotropic intracellular chaperone [5]. Sig1-R is 
a well-established drug target [16]. With its pharmacological 
proϐile, Sig1-R represents a promiscuous receptor since it 
binds to ligands with very diverse structures. These include 
small molecules that also interact with other receptors, 
such as ϐluvoxamine, ϐluoxetine, dextromethorphan, 
methamphetamine, haloperidol, verapamil, donepezil, 
chloroquine, and more [32]. 

DMT as a natural Sig-1R ligand

DMT is a naturally occurring classical hallucinogen 
with signiϐicant afϐinity at 17 known receptor sites [33]. 
The discovery of DMT as a natural ligand of the Sig-1R 
[31] helped to clarify the decades-long perplexing history 
of both these molecules. DMT has been classiϐied as an 
endogenous hallucinogen [34,35] with its exact physiological 
role unknown [36]. Nearly half a century of research was 
insufϐicient to offer a proper neurobiological explanation of 
the functions of this endogenous substance [37]. One reason 
for this is a paradigm issue, wherein the studies of DMT have 
mostly focused on its hallucinogenic effect mediated by the 
serotonin (5-HT1A, -2A, and -2C) receptors [38]. Moreover, 
DMT is a trace amine [39,40]. Trace amines are elusive; 
under normal conditions, they are present in the body in 
low concentrations, and it is not easy to determine the 
circumstances when they are mobilized. One noticeable fact 
is that there was a signiϐicant increase in DMT levels in the 
rat cortex following the induction of experimental cardiac 
arrest [41]. This supports our notion that DMT may play a 
role in the process of agony [42] when activation of Sig1-R 



The Potential Use of Dimethyltryptamine against Ischemia-reperfusion Injury of the Brain

053https://doi.org/10.29328/journal.jnnd.1001097 www.neuroscijournal.com

inϐlammatory cytokines, such as IL-1β, IL-6, IL-8, and TNF-α. 
Additionally, DMT application led to an increased secretion 
of the anti-inϐlammatory cytokine IL-10. The model also 
revealed a decrease in T-cell activation. The involvement of 
Sig-1R was veriϐied using gene silencing. 

In the second study [58] we examined whether activating 
Sig-1R by DMT can enhance the survival of hypoxic human 
cortical neurons (derived from induced pluripotent stem 
cells), monocyte-derived macrophages, and dendritic cells. 
The results demonstrated that DMT exhibited a signiϐicant 
protective effect via the Sig-1R mediation in severe hypoxia 
(0.5% O2). Application of DMT to the media increased the 
survival rate up to 200%. The positive outcome was linked 
to the reduced expression and activity of the alpha subunit of 
the hypoxia-inducible factor 1. 

These data suggest that DMT may have a protective 
impact on both sides of the IRI. This can be achieved by a 
Sig-1R-dependent mechanism, which helps reduce hypoxic 
lesions on one hand and has an anti-inϐlammatory effect on 
the other. 

In vivo studies indicating benefi ts of DMT 
administration in IRI of the brain1

In a recent animal experiment published in 2020 by our 
team [59] we studied the effect of DMT on reperfusion injury 
following artiϐicially induced stroke. Transient occlusion 
was elicited under general anesthesia by inserting a nylon 
line into the right middle cerebral artery for 60 minutes. 
Before the ϐilament removal, one treatment group was 
administered an intraperitoneal bolus of DMT at a dosage 
of 1 mg/kg, followed by a continuous maintenance dose of 2 
mg/kg/h supplied over 24 hours using osmotic minipumps. 
Concomitantly with the application of DMT, another group 
was given the Sig-1R antagonist BD-1063 at a dose of 1 mg/
kg as a bolus followed by a maintenance dose of 2 mg/kg/h. 
Control animals received a bolus of the vehicle only. The 
volume of the stroke lesions was determined by magnetic 
resonance imaging 24 hours later. Functional recovery 
was evaluated using the staircase method in two groups of 
pre-trained, post-stroke animals—one received DMT and 
the other received DMT+BD-1063. Animals treated with 
DMT showed a reduction of lesion volume by almost 50% 
and their functional recovery improved signiϐicantly. The 
positive effects of DMT were alleviated by the BD-1063 
administration. The plasma samples from DMT-treated rats 
exhibited elevated levels of brain-derived neurotrophic 
factor and IL-10, whereas the levels of IL1-β, IL-6, and TNF-α 
were decreased. We concluded that there was a Sig-1R-
dependent reduction of post-stroke brain injury following 
the delivery of exogenous DMT. The presented experimental 

setup was closer to an anti-reperfusion injury model than to 
an anti-ischemic one. 

Our most recent publication [60] addressed in a different 
model whether DMT can ameliorate cerebral ischemic injury. 
Global forebrain ischemia was induced in anesthetized rats 
by ligation of both common carotid arteries. To increase the 
metabolic stress, we generated Spreading Depolarizations 
(SDs) and superimposed a brief (1-minute) period of 
hypoxia by reducing the amount of oxygen in the anesthetic 
gas. DMT, PRE-084 (a Sig-1R agonist), NE-100 (a Sig-1R 
antagonist), and asenapine (a broad-spectrum 5-HT receptor 
antagonist) were administered intravenously either alone 
or in combination. The occupation of the cerebral Sig-1Rs 
by the administered drugs was assessed using a radioligand 
binding assay. The physiological effect of DMT application 
was observed by monitoring cerebral blood ϐlow changes 
with subsequent histopathological workup. Both the Sig-
1R agonists, DMT and PRE-084, reduced the extent of SDs, 
with reduced effectiveness in the presence of the Sig-1R 
antagonist NE-100. The role of 5-HT receptors was ruled out, 
as even when they were occupied by asenapine, DMT still 
could reduce SD amplitude. Overall, DMT decreased neuronal 
loss and enhanced astrocyte survival in a manner dependent 
on Sig-1R. 

The ϐindings above follow other studies activating Sig1-R 
by PRE-084 [61] and dexmedetomidine [62] in brain IRI, 
and indicate, that DMT has the potential to be utilized as 
an adjuvant treatment for acute cerebral ischemia. Further 
research should be conducted to explore its possible use in 
the management of clinical death or neonatal asphyxia. 

Since the doses of DMT used in these animal studies were 
close to the hallucinogenic range (as measured by head-
twitching in previous rodent studies)2, ethical concerns may 
arise over human applications. Indeed, DMT has signiϐicant 
abuse liability due to its psychedelic effects looked for by 
substance users. However, its addictive potential and the 
risk of long-term psychological disturbances are extremely 
low [63]. The experiences DMT induces typically do not 
create a strong desire to consume more of the substance [64]. 
Moreover, the medical emergencies that may beneϐit from its 
clinical use involve unconscious subjects or patients under 
general anesthesia (see below), and DMT has been proven to 
be safe in alert humans under controlled medical supervision 
[65,66]. 

Conclusion
This paper presented indirect support from the literature 

and direct evidence from our published in vitro and in vivo 
studies that DMT may have beneϐicial therapeutic effects in 
brain IRI. These data could form a basis for follow-ups by  1These animal experiments were conducted in accordance with the guidelines 

set by the European Communities Council Directive (86/609 EEC) and the 
ARRIVE guidelines, with the approval of the Animal Care and Use Committee of 
the Semmelweis University and University of Szeged, Hungary. 

2The head-twitch response has been widely adopted as a behavioural assay for 
detecting hallucinogen-like effects. 
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human trials and be incorporated into various therapeutic 
approaches, particularly in the treatment of IRI. Indeed, 
inspired by the results of our DMT stroke study, Algernon 
Pharmaceuticals, a Canadian drug development and 
repurposing company has recently completed a feasibility 
study and has ϐinalized its clinical trial design for a Phase 
2 DMT stroke study. As they announced: “The decision to 
investigate DMT for stroke treatment was based on the 
ground-breaking 2020-published rat occlusion stroke study 
showing that DMT reduced infarct volume and led to an 
almost full recovery of motor function 30 days after a single 
treatment with statistical signiϐicance.” At Algernon, the plan 
is to investigate whether DMT can be used to treat ischemic 
stroke to minimize its impact and promote recovery. 
Current medical methods have limited effectiveness in 
treating IRI, and there are no effective preventive measures 
available against reperfusion injury that may develop after 
thrombolytic therapy of stroke. In the majority of stroke 
cases, the ischemic phase cannot be predicted, while in 
surgery the clamping of the arteries is under full control, 
therefore the anti-hypoxia effect of DMT can be exploited 
inϐluencing such way both arms of the IRI pathology. 

If stroke patients are undergoing general anesthesia 
during their treatment, the powerful psychedelic effect of 
DMT should be a minimal concern. Similar reasoning applies 
to unconscious patients undergoing cardiopulmonary 
resuscitation within the limited time window under the 
threat of permanent brain damage. Our global brain hypoxia 
study offers hope for these cases. 

Cardiac arrest is a widespread condition that often leads to 
a high death rate, even when prompt and well-administered 
cardiopulmonary resuscitation is performed. While partially 
successful cardiopulmonary resuscitations may extend one’s 
lifespan, they may not necessarily improve the quality of life 
during those additional years. Approximately 290,000 cardiac 
arrests that take place in hospitals are reported annually in 
the United States. Although this condition is highly prevalent 
and grave, there are limited options for pharmacological 
intervention. If DMT can prolong the critical period of clinical 
death, this could potentially lead to an increased success 
rate of cardiopulmonary resuscitation and improved long-
term functionality. Furthermore, one may also come up with 
testing DMT or its analogs in perinatal indications against 
ischemia of the baby’s brain with the hope of life saved and 
made more meaningful. An increased openness concerning 
optimizing clinical care by the fruits of new research with 
DMT or its analogs might improve outcomes in broad medical 
ϐields. 

Our main conclusion is that DMT possesses not only 
psychedelic properties but also exhibits bioactivity in a 
broader sense. Its Sig-1R-mediated actions reveal a universal 
modulatory role in cellular stress-induced changes at 
the endoplasmic reticulum-mitochondria interface. Our 

presented arguments do not rely on the conventional 
understanding of DMT as a hallucinogen that acts on serotonin 
receptors and produces psychopathological effects. Instead, 
we intend to shift the focus of research toward its potential 
role in adaptive somato- and neurophysiological processes. 
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