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Abstract 

 Eukaryotic translation initiation factor 4G1 (eIF4G1) has been implicated in 
Parkinson’s disease (PD) pathogenesis. However, the contribution of EIF4G1 genetic 
variation to PD susceptibility remains unclear. To investigate the association 
between the EIF4G1 variant rs2178403 and PD risk. We analyzed EIF4G1 expression 
in PD and control samples using public GEO datasets (GSE54536). Additionally, we 
conducted a hospital-based case-control study with 541 sporadic PD patients and 
401 age-/sex-matched healthy controls of Han Chinese ancestry. Genotyping of 
rs2178403 was performed using Sequenom MassARRAY iPLEX. GEO data revealed 
a non-signifi cant trend toward elevated EIF4G1 expression in PD samples (p < 0.1). 
Genetic analysis identifi ed a signifi cant association between the rs2178403 GG 
genotype and increased PD risk under a recessive model (OR = 1.31, 95% CI = 1.010–
1.703, p = 0.042). Stratifi ed analysis showed a stronger effect in females. These 
fi ndings suggest rs2178403 may contribute to PD susceptibility in the Han Chinese 
population. This study supports an association between the EIF4G1 variant rs2178403 
and PD risk. Further investigation into EIF4G1 inhibition as a potential therapeutic 
strategy for PD is warranted.

predispositions, environmental exposures, and aging-related 
cellular changes [6,7]. 

Recent genetic studies have identiϐied both familial and 
sporadic forms of Parkinson’s disease (PD), with numerous 
risk loci implicated through genome-wide association 
studies (GWAS) [8]. Among molecular pathways linked to PD 
pathogenesis, the mammalian target of rapamycin (mTOR) 
signaling cascade has garnered signiϐicant attention due to 
its central role in regulating autophagy, protein synthesis, 
and cellular metabolism [9,10]. mTOR functions through 
two multiprotein complexes, mTORC1 and mTORC2, with 
well-characterized upstream regulators and downstream 
effectors [11]. 

Introduction
 Parkinson’s disease (PD) is the second most prevalent 

neurodegenerative disorder, affecting approximately 1% 
of individuals over 60 years and 4% - 5% of those over 85 
[1,2]. PD is pathologically characterized by the progressive 
loss of dopaminergic neurons in the substantia nigra and the 
presence of Lewy bodies containing aggregated α-synuclein 
[3,4]. Clinically, PD presents with motor symptoms such 
as tremors, rigidity, bradykinesia, and postural instability, 
alongside non-motor symptoms like depression, sleep 
disturbances, and cognitive decline [5]. The etiology of PD 
is multifactorial, involving a complex interplay of genetic 
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A key mTORC1 substrate is the eukaryotic translation 
initiation factor 4E-binding protein family (EIF4E-BP1/2/3) 
[12]. When hypophosphorylated, EIF4E-BPs sequester 
eIF4E and prevent assembly of the eIF4F complex, thereby 
suppressing cap-dependent translation initiation. The 
scaffolding protein eIF4G1 is essential for eIF4F complex 
formation, which includes eIF4E and eIF4A [13]. The 
eukaryotic translation initiation factor 4G1 (eIF4G1) is 
a scaffolding protein essential for assembling the eIF4F 
complex, which includes eIF4E and eIF4A [14,15]. Under 
normal physiological conditions, eIF4G1 interacts with eIF4E 
to recruit ribosomes to the 5’-cap of mRNAs, thus initiating 
protein synthesis [16,17]. However, alterations in eIF4G1 
levels or function can disturb proteostasis and have been 
associated with various neurodegenerative diseases [18]. 
Dysregulation of eIF4G1 expression or function disrupts 
proteostasis and is implicated in neurodegenerative 
disorders. In PD, impaired mTORC1-eIF4F signaling 
contributes to the accumulation of misfolded α-synuclein 
by compromising both its clearance and the translation of 
proteostatic machinery [19]. 

 Although EIF4G1 mutations have been reported in familial 
PD, primarily in European cohorts, their role in sporadic PD 
across diverse ethnic populations remains underexplored 
[20]. To address this gap, we investigated the association 
between the EIF4G1 variant rs2178403 and PD risk in a 
Han Chinese population. Complementarily, we analyzed 
eIF4G1 expression patterns in public transcriptomic datasets 
to assess functional relevance. This integrated genetic-
transcriptomic approach aims to clarify the contribution 
of EIF4G1 to PD susceptibility and provide a mechanistic 
foundation for future therapeutic targeting.

Methods
Gene expression analysis

Gene expression data from Parkinson’s disease (PD) 
patients and healthy controls were retrieved from the Gene 
Expression Omnibus (GEO) database (dataset GSE54536, 
designated as the training cohort). Following standardization 
of all samples, differential expression analysis was performed 
using thresholds of |log₂ fold change| > 1.5 and false discovery 
rate (FDR) < 0.1.

Study population

Our case–control study recruited a total of 942 Han 
Chinese subjects, including 541 sporadic PD patients and 
401 healthy subjects matched by age, sex, and ethnicity. 
Participants were recruited from the Parkinson Clinic Center 
of the First Afϐiliated Hospital of Sun Yat-sen University 
from January 2014 to June 2016. Parkinson’s disease was 
diagnosed in accordance with the UK PD Society Brain Bank 
clinical diagnostic criteria [21]. The study was approved by 
the Ethics Committee of the First Afϐiliated Hospital of Sun 
Yat-Sen University, and all study subjects provided their 
informed written consent.

DNA isolation and single-nucleotide 
polymorphism genotyping

DNA extraction used the standard phenol-chloroform 
method [22]. Rs2178403 genotyping employed Sequenom 
MassARRAY iPLEX (San Diego, CA).

Statistical analysis

Our data comes from Gene Expression Omnibus (GEO) 
datasets (GSE54536). A volcano plot was used to identify 
differentially expressed genes (using n-fold ≥1.5 and p - value 
<0.1 as the threshold of statistical signiϐicance).

The haplotype block was analyzed with Haploview and 
used Beagle 4.1 for further haplotype analysis. For all other 
statistical analyses, we used SPSS, version 27.0 (IBM Corp., 
Armonk, NY, USA) [23]. Genotypes and allele frequencies 
were determined by direct counting. Sex and age differences 
between patients and controls were examined using 
Student’s t-test. The Hardy–Weinberg equilibrium (HWE) of 
the genotype distributions across patients and controls was 
calculated using a chi-squared test. To test for differences 
in genotype and allele distributions between patients and 
controls, we used chi-squared tests or Fisher’s exact tests. 
The odds ratio (OR) and the 95% conϐidence interval (CI) 
were used to describe the association between SNPs and the 
PD risk using logistic regression adjusted for age and sex. p < 
0.05 (two-tailed) was considered signiϐicant.

Results
eIF4G1 showed a more signifi cant increase in the 
PD group than control

We screened 874 differentially expressed genes (DEGs) 
between the PD group and the control group in GSE54536 
using the R package “limma” (p < 0.1). The analysis data 
show that eIF4G1 has a higher increase in the PD group than 
control. The green arrow in group 1 points to the position of 
eIF4G1.

Characteristics of the study population

Our case–control study enrolled a total of 942 Han 
Chinese participants. The PD group included 541 subjects 
(320 men and 221 women). The control group included 401 
age-, sex-, and ethnicity-matched subjects (229 males and 
172 females). The details are outlined in Table 1.

Distributions of the rs2178403 polymorphism in PD 
and control groups

The genotype distribution of rs2178403 in both the PD 
and healthy control groups was determined to identify any 

Table 1: Demographic characteristics.
PD group (n = 541) Control group (n = 401) p

Sex (male/female) 320/221 229/172 0.530
Age (mean ± SD) 63.36 ± 10.74 62.88 ± 10.13 0.938
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Progressive dopaminergic neuron loss and α-synuclein 
aggregation are core hallmarks of Parkinson’s disease (PD), 
which reϐlect underlying proteostasis failure [4]. Parkinson’s 
disease is considered to have multiple causes, resulting from 
both genetic and non-genetic factors. Genetic variants with 
large effect sizes have been identiϐied in approximately 20% 
of persons with Parkinson’s disease (monogenic Parkinson’s 
disease). Autosomal dominant Parkinson’s disease with 
incomplete penetrance includes variants in LRRK2, GBA1, 
VPS35, and SNCA [25,26]. mTORC1 signaling coordinates 
key cellular processes, including metabolism, autophagy, and 
cap-dependent translation through effectors such as EIF4E-
BPs and the eIF4F complex [27]. Within eIF4F, eIF4G1 acts as 
a critical scaffolding protein essential for complex assembly 
[28]. EIF4G1 expression is increased in different types of 

deviation from HWE. Genotype and allele frequencies for 
rs2178403 are summarized in Table 2. 

rs2178403 polymorphism and PD susceptibility

For rs2178403, GG genotype frequency in the PD group 
was signiϐicantly higher than in the control group, when 
compared by logistic regression analysis using recessive 
model and allelic models(AA +AG versus GG; OR =1.31, 95% 
CI = 1.010–1.703, p = 0.042; G versus A, OR =1.263, 95% CI = 
1.041–1.532, p = 0.018). By contrast, no signiϐicant difference 
was identiϐied using either the dominant (AA versus AG+GG, 
OR =1.46, 95% CI = 0.969–2.209, p = 0.069) (Table 3). 

Next, we compared both groups by subgroup analysis 
based on sex. We found that female patients with the recessive 
model and allelic models were associated with an increased 
risk of developing PD compared to female controls (AA +AG 
versus GG; OR = 1.84, 95% CI = 1.23–2.78, p = 0.003; G versus 
A, OR = 1.50, 95% CI = 1.11–2.02, p = 0.008). In addition, 
male patients with the allelic models were associated with an 
increased risk of developing PD compared to male controls 
(G versus A, OR = 1.45, 95% CI = 1.11–1.89, p = 0.005). 
Furthermore, the dominant models detected no difference in 
the analysis (Figure 1). The results of different comparisons 
are presented in Table 3. 

Discussion
EIF4G1 was conϐirmed as a candidate PD gene by Chartier-

Harlin, et al. [24] This case-control study investigated the 
association between the EIF4G1 variant rs2178403 and PD 
susceptibility in a Han Chinese cohort (541 patients and 
401 controls). We concurrently analyzed EIF4G1 expression 
patterns in public datasets to assess functional relevance. Our 
results support growing evidence implicating dysregulated 
mRNA translation initiation via the mTORC1-eIF4F axis in 
PD pathogenesis.

Table 2: The genotype and allele frequencies for the SNP.

Group
Genotype Allele HWE

pGG(%) AG(%) AA(%) G(%) A(%)

rs2178403
PD(n = 541) 256(47.32) 235(43.44) 50(9.24) 747(69.04) 335(30.96) 0.708

Control(n = 401) 163(40.65) 186(46.38) 52(12.97) 512(63.84) 290(36.16) 0.926

female
PD(n = 221) 114(51.59) 82(37.10) 25(11.31) 310(70.14) 132(29.86)

Control(n = 179) 63(35.20) 84(46.93) 25(13.97) 210(61.05) 134(38.95)

male
PD(n = 320) 142(44.38) 153(47.81) 25(7.81) 437(68.28) 156(24.37)

Control(n = 229) 100(43.67) 102(44.54) 27(11.79) 302(65.94) 156(34.06)

Table 3: Summary of comparisons stratiϐied by sex and age.
Models PD Control OR (95% CI) p

rs2178403
Dominant (AA/(AG+GG) 50/491 52/349 1.46 (0.969-2.209) 0.069
Recessive (AA+AG)/GG) 285/256 238/163 1.31 (1.010-1.703) 0.042

Allele (G/A) 747/335 512/290 1.263 (1.041-1.532) 0.018

female
Dominant (AA/(AG+GG) 25/196 25/147 1.33(0.73-2.42) 0.343
Recessive (AA+AG)/GG) 107/114 109/63 1.84(1.23-2.78) 0.003

Allele (G/A) 310/132 210/134 1.50(1.11-2.02) 0.008

male
Dominant (AA/(AG+GG) 25/295 27/202 1.58(0.89-2.81) 0.119
Recessive (AA+AG)/GG) 178/142 129/100 1.03(0.73-1.45) 0.869

Allele (G/A) 437/156 302/156 1.45(1.11-1.89) 0.005

Figure 1: GROUP 1 volcano plot of eIF4G1.
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cancers [29,30]. Besides, increased EIF4G1 could promote 
the formation of tumor emboli by facilitating the translation 
of IRES-containing p120 mRNAs [30]. Research has shown 
that Parkinson’s Disease Genes VPS35 and EIF4G1 Interact 
Genetically and Converge on α-Synuclein [31]. Our study 
focused on EIF4G1, although prior research in Han Chinese 
populations has shown no association between the EIF4G1 
variant rs2178403 and sporadic PD [32]. 

rs2178403 is an exonic variant in EIF4G1 in which 
methionine (ATG) is substituted with valine (GTG) [33]. 
Under a recessive model, genetic analysis identiϐied a 
signiϐicant association between rs2178403 and increased 
PD risk (OR = 1.31, p = 0.042). Notably, this effect was 
signiϐicantly stronger in females (OR = 1.84, p = 0.003) 
than in males. This pronounced sexual dimorphism may 
reϐlect neuroprotective interactions between estrogen and 
mTOR signaling. Further transcriptomic analysis revealed 
altered EIF4G1 expression in PD peripheral blood samples 
compared to controls. These ϐindings support the biological 
plausibility of EIF4G1 involvement in PD pathogenesis, where 
dysregulated expression might disrupt eIF4F stoichiometry 
and drive aberrant translation. Such disturbances could 
ultimately compromise proteostasis, potentially by impairing 
clearance of misfolded α-synuclein or promoting synthesis 
of aggregation-prone proteins, contributing to nigrostriatal 
vulnerability [34]. 

Several limitations should be noted. The study’s focus on 
a single variant (rs2178403) highlights the need for broader 
analysis across the EIF4G1 locus. Public expression datasets 
may be limited by tissue speciϐicity and cohort heterogeneity. 
While the observed gender disparity is statistically robust, 
its mechanism requires validation in neuronal models that 
account for hormonal modulation of mTOR-EIF4G1 crosstalk. 
Future work must determine how the rs2178403 genotype or 
altered EIF4G1 expression affects eIF4F complex dynamics, 
translation ϐidelity, and α-synuclein metabolism.

In conclusion, this study identiϐies rs2178403 within 
EIF4G1 as a risk variant for Parkinson’s disease (PD) 
susceptibility in the Han Chinese population, revealing novel 
sexual dimorphism in its effect. The female-predominant risk 
pattern suggests potential modulation of PD pathogenesis 
through endocrine-mTOR pathway interactions, highlighting 
the need for sex-speciϐic therapeutic exploration. Our 
ϐindings reinforce dysregulated mTORC1-mediated 
translation as a contributor to proteostatic failure in PD. 
Future research should expand genetic analyses across 
EIF4G1 regulatory networks in diverse populations, establish 
functional consequences using neuron-speciϐic models, and 
explore therapeutic modulation of this pathway to mitigate 
α-synuclein pathology.
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