Review Article

Central nervous system diseases associated with blood brain barrier breakdown - A Comprehensive update of existing literature

Rajib Dutta*

Published: 25 August, 2020 | Volume 4 - Issue 2 | Pages: 053-062

Blood vessels that supply and feed the central nervous system (CNS) possess unique and exclusive properties, named as blood–brain barrier (BBB). It is responsible for tight regulation of the movement of ions, molecules, and cells between the blood and the brain thereby maintaining controlled chemical composition of the neuronal milieu required for appropriate functioning. It also protects the neural tissue from toxic plasma components, blood cells and pathogens from entering the brain. In this review the importance of BBB and its disruption causing brain pathology and progression to different neurological diseases like Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD) etc. will be discussed.

Read Full Article HTML DOI: 10.29328/journal.jnnd.1001035 Cite this Article Read Full Article PDF


Blood brain barrier; Central nervous system; Neuronal functioning; Brain pathology; Neurological disease


  1. Zlokovic BV. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron. 2018; 57: 178–201. PubMed: https://pubmed.ncbi.nlm.nih.gov/18215617/
  2. Daneman R. The blood–brain barrier in health and disease. Ann Neurol. 2018; 72: 648–672. PubMed https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4292164/
  3. Montagne A, Zhao Z, Zlokovic BV. Alzheimer’s disease: a matter of blood-brain barrier dysfunction? J Exp Med. 2017; 214: 3151-3169. PubMed: https://pubmed.ncbi.nlm.nih.gov/29061693/
  4. Dong X. Current Strategies for Brain Drug Delivery. Theranostics. 2018; 8: 1481–1493. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5858162/
  5. Iadecola C. The pathobiology of vascular dementia. Neuron. 2013; 80: 844–866. PubMed: https://pubmed.ncbi.nlm.nih.gov/24267647/
  6. Iadecola C. The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron. 2017; 96: 17–42. PubMed: https://pubmed.ncbi.nlm.nih.gov/28957666/
  7. Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci. 2017; 18: 419–434. PubMed: https://pubmed.ncbi.nlm.nih.gov/28515434/
  8. Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV. Establishment and Dysfunction of the Blood-Brain Barrier. Cell. 2015; 163: 1064–1078. PubMed: https://pubmed.ncbi.nlm.nih.gov/26590417/
  9. Thurgur H, Pinteaux E. Microglia in the Neurovascular Unit: Blood–Brain Barrier–microglia Interactions After Central Nervous System Disorders. Neuroscience. 2018; 405 :55-67. PubMed: https://pubmed.ncbi.nlm.nih.gov/31007172
  10. Hawkins BT. The Blood-Brain Barrier/Neurovascular Unit in Health and Disease. Pharmacological Rev. 2005; 57: 173–185. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3757302/
  11. Sweeney, Melanie D, Zlokovic BV. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci. 2005; 19: 771-783. PubMed: https://pubmed.ncbi.nlm.nih.gov/27227366/
  12. Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. 2011; 12: 723–738. PubMed: https://pubmed.ncbi.nlm.nih.gov/22048062/
  13. Mancuso MR, Kuhnert F, Kuo CJ. Developmental angiogenesis of the central nervous system. Lymphat Res Biol. 2008; 6: 173–180. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712664/
  14. Posokhova E, Shukla A, Seaman S, Volate S, Hilton MB, et al. GPR124 functions as a WNT7-specific coactivator of canonical -catenin signaling. Cell Reports. 2015; 10: 123–130.
  15. Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, et al. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science. 2011; 334: 1727–1731. PubMed: https://pubmed.ncbi.nlm.nih.gov/22144466/
  16. Armulik A, Genové G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011; 21: 193–215. PubMed: https://pubmed.ncbi.nlm.nih.gov/21839917/
  17. Le Guelte A, Galan-Moya EM, Dwyer J, Treps L, Kettler G, et al. Semaphorin 3A elevates endothelial cell permeability through PP2A inactivation. J Cell Sci. 2012; 125: 4137–4146. PubMed: https://pubmed.ncbi.nlm.nih.gov/22685328/
  18. Blanchette M, Daneman R. Formation and maintenance of the BBB. Mechanisms of Development. 2015; 138, 8–16. PubMed: https://pubmed.ncbi.nlm.nih.gov/26215350/
  19. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013; 19: 1584-1596. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4080800/
  20. Sun M, Ma K, Wen J, Wang G, Zhang C, et al. A Review of the Brain-Gut-Microbiome Axis and the Potential Role of Microbiota in Alzheimer’s Disease. J Alzheimers Dis. 73: 849-865. PubMed: https://pubmed.ncbi.nlm.nih.gov/31884474/
  21. Erickson MA, Banks WA. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer's disease. J Cereb Blood Flow Metab 2013; 33: 1500-1513. PubMed: https://pubmed.ncbi.nlm.nih.gov/23921899/
  22. Deane R, Bell RD, Sagare A, Zlokovic BV. Clearance of amyloid-beta peptide across the blood-brain barrier: implication for therapies in Alzheimer's disease. CNS Neurol Disord Drug Targets. 2009; 8: 16-30. PubMed: https://pubmed.ncbi.nlm.nih.gov/19275634/
  23. Yamada K, Hashimoto T, Yabuki C, Nagae Y, Tachikawa M, et al. The low density lipoprotein receptor-related protein 1 mediates uptake of amyloid beta peptides in an in vitro model of the blood-brain barrier cells. J Biol Chem. 2008; 283: 34554-34562. PubMed: https://pubmed.ncbi.nlm.nih.gov/18940800/
  24. Ujiie M, Dickstein DL, Carlow DA, Jefferies WA. Blood-brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation. 2003; 10: 463-470. PubMed: https://pubmed.ncbi.nlm.nih.gov/14745459/
  25. Wu S, Liu H, Zhao H, Wang X, Chen J, et al. Environmental lead exposure aggravates the progression of Alzheimer's disease in mice by targeting on blood brain barrier. Toxicol Lett. 2020; 319: 138-147. PubMed: https://pubmed.ncbi.nlm.nih.gov/31730887/
  26. Shin Y, Choi SH, Kim E, Bylykbashi E, Kim JA, et al. Blood–Brain Barrier Dysfunction in a 3D In Vitro Model of Alzheimer’s Disease. Adv Sci. 2019; 6: 1900962. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6794630/
  27. Miners JS, Kehoe PG, Love S, Zetterberg H, Blennow K. CSF evidence of pericyte damage in Alzheimer’s disease is associated with markers of blood-brain barrier dysfunction and disease pathology. Alzheimers Res Ther. 2019; 11: 81: PubMed: https://pubmed.ncbi.nlm.nih.gov/31521199/
  28. Le Stunff H, Véret J, Kassis N, Denom J, Meneyrol K, et al. Deciphering the Link Between Hyperhomocysteinemia and Ceramide Metabolism in Alzheimer-Type Neurodegeneration. Front Neurol. 2019; 10; 807. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6684947/
  29. He JT, Zhao X, Xu L, Mao CY. Vascular Risk Factors and Alzheimer's Disease: Blood-Brain Barrier Disruption, Metabolic Syndromes, and Molecular Links. J Alzheimers Dis. 2020; 73: 39‐58. PubMed: https://pubmed.ncbi.nlm.nih.gov/31815697/
  30. Rivera S, García-González L, Khrestchatisky M, Baranger K. Metalloproteinases and their tissue inhibitors in Alzheimer’s disease and other neurodegenerative disorders. Cell Molecular Life Sci. 2019; 76: 3167-3191. PubMed: https://pubmed.ncbi.nlm.nih.gov/31197405/
  31. Ozkizilcik A, Sharma A, Lafuente JV, Muresanu DF, Castellani RJ, et al. Nanodelivery of cerebrolysin reduces pathophysiology of Parkinson’s disease. Progress Brain Res. 2019; 201–246. PubMed: https://pubmed.ncbi.nlm.nih.gov/30961868/
  32. Matsumoto J, Stewart T, Sheng L, Li N, Bullock k, et al. Transmission of α-synuclein-containing erythrocyte-derived extracellular vesicles across the blood-brain barrier via adsorptive mediated transcytosis: another mechanism for initiation and progression of Parkinson's disease?. Acta Neuropathol Commun. 2017; 5: 71. PubMed: https://pubmed.ncbi.nlm.nih.gov/28903781/
  33. Olmedo-Díaz S, Estévez-Silva H, Orädd G, Af Bjerkén S, Marcellino D, et al. An altered blood-brain barrier contributes to brain iron accumulation and neuroinflammation in the 6-OHDA rat model of Parkinson's disease. Neuroscience. 2017; 362: 141‐151. PubMed: https://pubmed.ncbi.nlm.nih.gov/28842186/
  34. Gray MT, Woulfe JM. Striatal blood-brain barrier permeability in Parkinson's disease. J Cereb Blood Flow Metab. 2015; 35: 747‐750. PubMed: https://pubmed.ncbi.nlm.nih.gov/25757748/
  35. Dohgu S, Takata F, Matsumoto J, Kimura I, Yamauchi A, et al. Monomeric α-synuclein induces blood–brain barrier dysfunction through activated brain pericytes releasing inflammatory mediators in vitro. Microvascular Res. 2019. 124: 61-66. PubMed: https://pubmed.ncbi.nlm.nih.gov/30885616/
  36. Chung YC, Kim YS, Bok E, Yune TY, Maeng S, et al. MMP-3 contributes to nigrostriatal dopaminergic neuronal loss, BBB damage, and neuroinflammation in an MPTP mouse model of Parkinson’s disease. Mediat Inflamm. 2013: 370526.
  37. Lerner RP, Francardo V, Fujita K, Bimpisidis Z, Jourdain VA, et al. Levodopa-induced abnormal involuntary movements correlate with altered permeability of the blood-brain-barrier in the basal ganglia. Sci Rep. 2017; 7: 16005. PubMed: https://pubmed.ncbi.nlm.nih.gov/29167476/
  38. Ohlin KE, Sebastianutto I, Adkins CE, Lundblad C, Lockman PR, et al. Impact of L-DOPA treatment on regional cerebral blood flow and metabolism in the basal ganglia in a rat model of Parkinson's disease. Neuroimage. 2012; 61: 228‐239. PubMed: https://pubmed.ncbi.nlm.nih.gov/22406356/
  39. Duran-Vilaregut J, del Valle J, Manich G, Camins A, Pallas M, et al. Role of matrix metalloproteinase- 9(MMP-9) in striatal blood-brain barrier disruption in a 3-nitropropionic acid model of Huntington’s disease. Neuropathol Appl Neuro. 2011; 37: 525–537. PubMed: https://pubmed.ncbi.nlm.nih.gov/21175737/
  40. Drouin-Ouellet J, Sawiak SJ, Cisbani G, Lagacé M, Kuan W, et al. Cerebrovascular and blood-brain barrier impairments in Huntington’s disease: potential implications for its pathophysiology. Ann Neurol. 2015; 78: 160–177. PubMed: https://pubmed.ncbi.nlm.nih.gov/25866151/
  41. Hsiao HY, Chen YC, Huang CH, Chen CC, Hsu Y, et al. Aberrant astrocytes impair vascular reactivity in Huntington disease. Ann Neurol. 2015; 78: 178‐192. PubMed: https://pubmed.ncbi.nlm.nih.gov/25914140/
  42. Lin CY, Hsu YH, Lin MH, Yang TH, Chen HM, et al. Neurovascular abnormalities in humans and mice with Huntington's disease. Exp Neurol. 2013; 250: 20‐30. PubMed: https://pubmed.ncbi.nlm.nih.gov/24036415/
  43. Lim RG, Quan C, Reyes-Ortiz AM, et al. Huntington's Disease iPSC-Derived Brain Microvascular Endothelial Cells Reveal WNT-Mediated Angiogenic and Blood-Brain Barrier Deficits. Cell Rep. 2017; 19: 1365‐1377. PubMed: https://pubmed.ncbi.nlm.nih.gov/28514657/
  44. Di Pardo A, Amico E, Scalabrì F, et al. Impairment of blood-brain barrier is an early event in R6/2 mouse model of Huntington Disease. Sci Rep. 2017; 7: 41316. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5259798/
  45. Garbuzova-Davis S, Haller E, Saporta S, Kolomey I, Nicosia SV, et al. Ultrastructure of blood-brain barrier and blood-spinal cord barrier in SOD1 mice modeling ALS. Brain Res. 2007; 1157: 126‐137. PubMed: https://pubmed.ncbi.nlm.nih.gov/17512910/
  46. Miyazaki K, Ohta Y, Nagai M, et al. Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis. J Neurosci Res. 2011; 89: 718‐728. PubMed: https://pubmed.ncbi.nlm.nih.gov/21337372/
  47. Winkler EA, Sengillo JD, Sagare AP, et al. Blood-spinal cord barrier disruption contributes to early motor-neuron degeneration in ALS-model mice. Proc Natl Acad Sci U S A. 2014; 111: E1035‐E1042. PubMed: https://pubmed.ncbi.nlm.nih.gov/24591593/
  48. Zhong Z, Ilieva H, Hallagan L, et al. Activated protein C therapy slows ALS-like disease in mice by transcriptionally inhibiting SOD1 in motor neurons and microglia cells. J Clin Invest. 2009; 119: 3437‐3449. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2769191/
  49. Zhong Z, Deane R, Ali Z, et al. ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat Neurosci. 2008; 11: 420‐422. PubMed: https://pubmed.ncbi.nlm.nih.gov/18344992/
  50. Nicaise C, Mitrecic D, Demetter P, et al. Impaired blood-brain and blood-spinal cord barriers in mutant SOD1-linked ALS rat. Brain Res. 2009; 1301: 152‐162. PubMed: https://pubmed.ncbi.nlm.nih.gov/19748495/
  51. Evans MC, Serres S, Khrapitchev AA, Stolp HB, Anthony DC, et al. T₂-weighted MRI detects presymptomatic pathology in the SOD1 mouse model of ALS. J Cereb Blood Flow Metab. 2014; 34: 785-793. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013759/
  52. Andjus PR, Bataveljić D, Vanhoutte G, Mitrecic D, Pizzolante F, et al. In vivo morphological changes in animal models of amyotrophic lateral sclerosis and Alzheimer's-like disease: MRI approach. Anat Rec (Hoboken). 2009; 292: 1882-1892. PubMed: https://pubmed.ncbi.nlm.nih.gov/19943341/
  53. Bataveljić D, Nikolić L, Milosević M, Todorović N, Andjus PR. Changes in the astrocytic aquaporin-4 and inwardly rectifying potassium channel expression in the brain of the amyotrophic lateral sclerosis SOD1(G93A) rat model. Glia. 2012; 60: 1991‐2003. PubMed: https://pubmed.ncbi.nlm.nih.gov/22987392/
  54. Bataveljić D, Stamenković S, Bačić G, Andjus PR. Imaging cellular markers of neuroinflammation in the brain of the rat model of amyotrophic lateral sclerosis. Acta Physiol Hung. 2011; 98: 27‐31. PubMed: https://pubmed.ncbi.nlm.nih.gov/21388928/
  55. Garbuzova-Davis S, Saporta S, Haller E, et al. Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS. PLoS One. 2007; 2: e1205. PubMed: https://pubmed.ncbi.nlm.nih.gov/18030339/
  56. Nicaise C, Soyfoo MS, Authelet M, et al. Aquaporin-4 overexpression in rat ALS model. Anat Rec (Hoboken). 2009; 292: 207‐213. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5562093/
  57. Garbuzova-Davis S, Hernandez-Ontiveros DG, Rodrigues MC, et al. Impaired blood-brain/spinal cord barrier in ALS patients. Brain Res. 2012; 1469: 114‐128. PubMed: https://pubmed.ncbi.nlm.nih.gov/22750125/
  58. Wu Y, Yang X, Li X, Wang H, Wang T. Elevated cerebrospinal fluid homocysteine is associated with blood-brain barrier disruption in amyotrophic lateral sclerosis patients Neurol Sci. 2020; 41: 1865-1872. PubMed: https://pubmed.ncbi.nlm.nih.gov/32086685/
  59. Wang Y, Jin S, Sonobe Y, et al. Interleukin-1β induces blood-brain barrier disruption by downregulating Sonic hedgehog in astrocytes. PLoS One. 2014; 9: e110024. PubMed: https://pubmed.ncbi.nlm.nih.gov/25313834/
  60. Ticozzi N, Tiloca C, Mencacci NE, et al. Oligoclonal bands in the cerebrospinal fluid of amyotrophic lateral sclerosis patients with disease-associated mutations. J Neurol. 2013; 260: 85‐92. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196642/
  61. Henkel JS, Beers DR, Wen S, Bowser R, Appel SH. Decreased mRNA expression of tight junction proteins in lumbar spinal cords of patients with ALS. Neurology. 2009; 72: 1614‐1616. PubMed: https://pubmed.ncbi.nlm.nih.gov/19414730/
  62. Garbuzova-Davis S, Woods RL 3rd, Louis MK, et al. Reduction of circulating endothelial cells in peripheral blood of ALS patients. PLoS One. 2010; 5: e10614. PubMed: https://pubmed.ncbi.nlm.nih.gov/20485543/
  63. Ortiz GG, Pacheco-Moisés FP, Macías-Islas MÁ, Flores-Alvarado LJ, Mireles-Ramírez MA, et al. Role of the blood-brain barrier in multiple sclerosis. Arch Med Res. 2014; 45: 687–697. PubMed: https://pubmed.ncbi.nlm.nih.gov/25431839/
  64. Alvarez JI, Cayrol R, Prat A. Disruption of central nervous system barriers in multiple sclerosis. Biochim Biophys Acta. 2011; 1812: 252–264. PubMed: https://pubmed.ncbi.nlm.nih.gov/20619340/
  65. Setiadi AF, Abbas AR, Jeet S, Wong K, Bischof A, et al. IL-17A is associated with the breakdown of the blood-brain barrier in relapsing-remitting multiple sclerosis. J Neuroimmunol. 2019; 332: 147–154. PubMed: https://pubmed.ncbi.nlm.nih.gov/31034962/
  66. Niu J, Tsai HH, Hoi KK, Huang N, Yu G, et al. Aberrant oligodendroglial-vascular interactions disrupt the blood-brain barrier, triggering CNS inflammation. Nat Neurosci. 2019; 22: 709-718. PubMed: https://pubmed.ncbi.nlm.nih.gov/30988524/
  67. Haarmann A, Schuhmann M, Silwedel C, Monoranu CM, Stoll G, et al. Human Brain Endothelial CXCR2 is Inflammation-Inducible and Mediates CXCL5- and CXCL8-Triggered Paraendothelial Barrier Breakdown. Int J Molecular Sci. 2019; 20: 602. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387364/
  68. Greene C, Hanley N, Campbell M. Claudin-5: gatekeeper of neurological function. Fluids and Barriers of the CNS. 2019; 16: 3. PubMed: https://pubmed.ncbi.nlm.nih.gov/30691500/
  69. Uchida Y, Sumiya T, Tachikawa M, et al. Involvement of Claudin-11 in Disruption of Blood-Brain, -Spinal Cord, and -Arachnoid Barriers in Multiple Sclerosis. Mol Neurobiol. 2019; 56: 2039‐2056.
  70. Eisele P, Konstandin S, Szabo K, Ebert A, Roßmanith C, et al. Temporal evolution of acute multiple sclerosis lesions on serial sodium (23Na) MRI. Mult Scler Relat Disord. 2019; 29: 48–54. PubMed: https://pubmed.ncbi.nlm.nih.gov/30669020/
  71. Filippi M, Rocca MA, Martino G, Horsfield MA, Comi G. Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol. 1998; 43: 809‐814.
  72. Vos CM, Geurts JJ, Montagne L, et al. Blood-brain barrier alterations in both focal and diffuse abnormalities on postmortem MRI in multiple sclerosis. Neurobiol Dis. 2005; 20: 953‐960. PubMed: https://pubmed.ncbi.nlm.nih.gov/16039866/
  73. Cramer SP, Modvig S, Simonsen HJ, Frederiksen JL, Larsson HB. Permeability of the blood-brain barrier predicts conversion from optic neuritis to multiple sclerosis. Brain. 2015; 138: 2571‐2583. PubMed: https://pubmed.ncbi.nlm.nih.gov/26187333/
  74. Sheikh MH, Henson SM, Loiola RA, Mercurio S, Colamatteo A, et al. Immuno-metabolic impact of the multiple sclerosis patients' sera on endothelial cells of the blood-brain barrier. J Neuroinflammation. 2020; 17: 153. PubMed: https://pubmed.ncbi.nlm.nih.gov/32386505/
  75. Wang S, Millward JM, Hanke-Vela L, et al. MR Elastography-Based Assessment of Matrix Remodeling at Lesion Sites Associated With Clinical Severity in a Model of Multiple Sclerosis. Front Neurol. 2020; 10: 1382. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6970413/
  76. Sacktor N, Skolasky RL, Seaberg E, Munro C, Becker JT, et al. Prevalence of HIV-associated neurocognitive disorders in the Multicenter AIDS Cohort Study. Neurology. 2016; 86: 334 –340. PubMed: https://pubmed.ncbi.nlm.nih.gov/26718568/
  77. Jessen Krut J, Mellberg T, Price RW, Hagberg L, Fuchs D, et al. Biomarker evidence of axonal injury in neuroasymptomatic HIV-1 patients. PLoS One. 2014; 9: e88591. PubMed: https://pubmed.ncbi.nlm.nih.gov/24523921/
  78. Xing Y, Shepherd N, Lan J, Li W, Rane S, et al. MMPs/TIMPs imbalances in the peripheral blood and cerebrospinal fluid are associated with the pathogenesis of HIV-1-associated neurocognitive disorders. Brain Behavior Immunity. 2017; 65: 161–172. PubMed: https://pubmed.ncbi.nlm.nih.gov/28487203/
  79. Strazza M, Pirrone V, Wigdahl B, Nonnemacher MR. Breaking down the barrier: the effects of HIV-1 on the blood-brain barrier. Brain Res. 2011; 1399: 96–115. PubMed:. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139430/
  80. Niu F, Yao H, Zhang W, Sutliff RL, Buch S. Tat 101-mediated enhancement of brain pericyte migration involves platelet-derived growth factor subunit B homodimer: implications for human immunodeficiency virus-associated neurocognitive disorders. J Neurosci. 2014; 34: 11812–11825. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145180/
  81. Doherty CP, O’Keefe E, Wallace E, Loftus T, Keaney J, et al. Blood-Brain Barrier Dysfunction as a Hallmark Pathology in Chronic Traumatic Encephalopathy. J Neuropathol Exp Neurol. 2016; 75: 656–662. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4913433/
  82. Farrell M, Aherne S, O'Riordan S, O'Keeffe E, Greene C, Campbell M. Blood-brain barrier dysfunction in a boxer with chronic traumatic encephalopathy and schizophrenia. Clin Neuropathol. 2019; 38: 51-58. PubMed: https://pubmed.ncbi.nlm.nih.gov/30574863/
  83. Glushakova OY, Glushakov AO, Borlongan CV, Valadka AB, Hayes RL, et al. Role of Caspase-3-Mediated Apoptosis in Chronic Caspase-3-Cleaved Tau Accumulation and Blood–Brain Barrier Damage in the Corpus Callosum after Traumatic Brain Injury in Rats. J Neurotrauma. 2018; 35: 157–173.
  84. Demock M, Kornguth S. A Mechanism for the Development of Chronic Traumatic Encephalopathy From Persistent Traumatic Brain Injury. J Exp Neurosci. 2019; 13: 1179069519849935. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6537483/
  85. Glushakova OY, Johnson D, Hayes RL. Delayed increases in microvascular pathology after experimental traumatic brain injury are associated with prolonged inflammation, blood-brain barrier disruption, and progressive white matter damage. J Neurotrauma. 2014; 31: 1180-1193. PubMed: https://pubmed.ncbi.nlm.nih.gov/24564198
  86. Keep RF, Xiang J, Ennis SR, Andjelkovic A, Hua Y, et al. Blood-brain barrier function in intracerebral hemorrhage. Acta Neurochir Suppl (Wien). 2008; 105: 73–77. PubMed: https://pubmed.ncbi.nlm.nih.gov/19066086/
  87. Khatri R, McKinney AM, Swenson B, Janardhan V. Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology. 2012; 79: S52–S57. PubMed: https://pubmed.ncbi.nlm.nih.gov/23008413/
  88. Prakash R, Carmichael ST. Blood-brain barrier breakdown and neovascularization processes after stroke and traumatic brain injury. Curr Opin Neurol. 2015; 28: 556–564. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267616/
  89. Keaney J, Campbell M. The dynamic blood-brain barrier. FEBS J. 2015; 282: 4067–4079. PubMed: https://pubmed.ncbi.nlm.nih.gov/26277326/
  90. The glucagon-like peptide-1 receptor agonist reduces inflammation and blood-brain barrier breakdown in an astrocyte-dependent manner in experimental stroke. J Neuroinflammation. 2019; 16: 242. PubMed: https://pubmed.ncbi.nlm.nih.gov/31779652/
  91. Sarvari S, Moakedi F, Hone E, Simpkins JW, Ren X. Mechanisms in blood-brain barrier opening and metabolism-challenged cerebrovascular ischemia with emphasis on ischemic stroke. Metab Brain Dis. 2020; 35: 851-868. PubMed: https://pubmed.ncbi.nlm.nih.gov/32297170/
  92. Guo F, Xu D, Lin Y, et al. Chemokine CCL2 contributes to BBB disruption via the p38 MAPK signaling pathway following acute intracerebral hemorrhage. FASEB J. 2020; 34: 1872-1884. PubMed: https://pubmed.ncbi.nlm.nih.gov/31914700/
  93. Li Y, Wu P, Bihl JC, Shi H. Underlying Mechanisms and Potential Therapeutic Molecular Targets in Blood-Brain Barrier Disruption after Subarachnoid Hemorrhage. Curr Neuropharmacol. 2020; 18: 1168-1179. PubMed: https://pubmed.ncbi.nlm.nih.gov/31903882/
  94. Victoria ECG, Toscano ECB, Oliveira FMS, et al. Up-regulation of brain cytokines and metalloproteinases 1 and 2 contributes to neurological deficit and brain damage in transient ischemic stroke. Microvasc Res. 2020; 129: 103973. PubMed: https://pubmed.ncbi.nlm.nih.gov/31891716/
  95. Bas¸kaya MK, Rao AM, Dog˘an A, Donaldson D, Dempsey RJ. The biphasic opening of the blood-brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett. 1997; 226: 33–36. PubMed: https://pubmed.ncbi.nlm.nih.gov/9153635/
  96. Habgood MD, Bye N, Dziegielewska KM, Ek CJ, Lane MA, et al. Changes in blood-brain barrier permeability to large and small molecules following traumatic brain injury in mice. Eur J Neurosci. 2007; 25: 231–238. PubMed: https://pubmed.ncbi.nlm.nih.gov/17241284/
  97. Kawoos U, Abutarboush R, Zarriello S, Qadri A, Ahlers ST, et al. N-acetylcysteine Amide Ameliorates Blast-Induced Changes in Blood-Brain Barrier Integrity in Rats. Front Neurol. 2019; 10: 650. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6607624/
  98. Szarka N, Toth L, Czigler A, Kellermayer Z, Ungvari Z, et al. Single Mild Traumatic Brain Injury Induces Persistent Disruption of the Blood-Brain Barrier, Neuroinflammation and Cognitive Decline in Hypertensive Rats. Int J Molecular Sci. 2019; 20: 3223. PubMed: https://pubmed.ncbi.nlm.nih.gov/31262044/
  99. Kuriakose M, Younger D, Ravula AR, Alay E, Rama Rao KV, et al. Synergistic Role of Oxidative Stress and Blood-Brain Barrier Permeability as Injury Mechanisms in the Acute Pathophysiology of Blast-induced Neurotrauma. Sci Rep. 2019; 9: 7717.
  100. Michinaga S, Koyama Y. Dual Roles of Astrocyte-Derived Factors in Regulation of Blood-Brain Barrier Function after Brain Damage. Int J Molecular Sci. 2019; 20: 571. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387062/
  101. Price L, Wilson C, Grant G. Frontiers in neuroscience blood-brain barrier pathophysiology following traumatic brain injury. In Translational Research in Traumatic Brain Injury; Laskowitz, D, Grant, G, Eds.; CRC Press/Taylor and Francis Group©: Boca Raton, FL, USA, 2016. PubMed: https://pubmed.ncbi.nlm.nih.gov/26583184/
  102. Hay JR, Johnson VE, Young AM, Smith DH, Stewart W. Blood-Brain Barrier Disruption Is an Early Event That May Persist for Many Years After Traumatic Brain Injury in Humans. J Neuropathol Exp Neurol. 2015; 74: 1147-1157. PubMed: https://pubmed.ncbi.nlm.nih.gov/26574669/
  103. Johnson VE, Weber MT, Xiao R, et al. Mechanical disruption of the blood-brain barrier following experimental concussion. Acta Neuropathol. 2018; 135: 711-726. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6532777/
  104. Hagos FT, Empey PE, Wang P, et al. Exploratory Application of Neuropharmacometabolomics in Severe Childhood Traumatic Brain Injury. Crit Care Med. 2018; 46: 1471-1479. PubMed: https://pubmed.ncbi.nlm.nih.gov/29742587/
  105. Higashida T, Kreipke CW, Rafols JA, et al. The role of hypoxia-inducible factor-1α, aquaporin-4, and matrix metalloproteinase-9 in blood-brain barrier disruption and brain edema after traumatic brain injury. J Neurosurg. 2011; 114: 92-101. PubMed: https://pubmed.ncbi.nlm.nih.gov/20617879/
  106. Pan R, Yu K, Weatherwax T, Zheng H, Liu W, et al. Blood Occludin Level as a Potential Biomarker for Early Blood Brain Barrier Damage Following Ischemic Stroke. Sci Rep. 2017; 7: 40331. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5228160/
  107. Zongo D, Ribéreau-Gayon R, Masson F, et al. S100-B protein as a screening tool for the early assessment of minor head injury. Ann Emerg Med. 2012; 59: 209-218 PubMed: https://pubmed.ncbi.nlm.nih.gov/21944878/
  108. Neher MD, Keene CN, Rich MC, Moore HB, Stahel PF. Serum biomarkers for traumatic brain injury. South Med J. 2014; 107: 248-255. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774463/
  109. Pham N, Akonasu H, Shishkin R, Taghibiglou C. Plasma soluble prion protein, a potential biomarker for sport-related concussions: a pilot study. PLoS One. 2015; 10: e0117286. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314282/
  110. Rigau V, Morin M, Rousset MC, de Bock F, Lebrun A, et al. Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. Brain. 2007; 130: 1942-1956. PubMed: https://pubmed.ncbi.nlm.nih.gov/17533168/
  111. Swissa E, Serlin Y, Vazana U, Prager O, Friedman A. Blood-brain barrier dysfunction in status epileptics: Mechanisms and role in epileptogenesis. Epilepsy Behav. 2019; 101: 106285. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4842020/
  112. Kim SY, Buckwalter M, Soreq H, Vezzani A, Kaufer D. Blood-brain barrier dysfunction-induced inflammatory signaling in brain pathology and epileptogenesis. Epilepsia. 2012; 53: 37-44. PubMed: https://pubmed.ncbi.nlm.nih.gov/23134494/
  113. Giza CC, Hovda DA. The new neurometabolic cascade of concussion. Neurosurgery. 2014; 75: S24-S33. PubMed: https://pubmed.ncbi.nlm.nih.gov/25232881
  114. Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol. 2011; 7: 31-40. PubMed: https://pubmed.ncbi.nlm.nih.gov/21135885
  115. van Vliet EA, da Costa Araújo S, Redeker S, van Schaik R, Aronica E, et al. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain. 2007; 130: 521-534. PubMed: https://pubmed.ncbi.nlm.nih.gov/17124188/
  116. Van Vliet EA, Aronica E, Gorter JA. Role of blood-brain barrier in temporal lobe epilepsy and pharmacoresistance. Neuroscience. 2017; 277: 455-473. PubMed: https://pubmed.ncbi.nlm.nih.gov/25080160/
  117. Liu XX, Yang L, Shao LX, et al. Endothelial Cdk5 deficit leads to the development of spontaneous epilepsy through CXCL1/CXCR2-mediated reactive astrogliosis. J Exp Med. 2020; 217: e20180992. PubMed: https://pubmed.ncbi.nlm.nih.gov/31699822/
  118. Dadas A, Janigro D. Breakdown of blood brain barrier as a mechanism of post-traumatic epilepsy. Neurobiol Dis. 2019; 123: 20-26. PubMed: https://pubmed.ncbi.nlm.nih.gov/30030025/
  119. Gorter JA, Aronica E, van Vliet EA. The Roof is Leaking and a Storm is Raging: Repairing the Blood–Brain Barrier in the Fight Against Epilepsy. Epilepsy Currents. 2019; 19: 177–181. PubMed: https://pubmed.ncbi.nlm.nih.gov/31037960
  120. Broekaart DWM, Anink JJ, Baayen JC, Idema S, de Vries HE, et al. Activation of the innate immune system is evident throughout epileptogenesis and is associated with blood-brain barrier dysfunction and seizure progression. Epilepsia. 2018; 59: 1931-1944. PubMed: https://pubmed.ncbi.nlm.nih.gov/30194729/
  121. Greene C, Kealy J, Humphries MM, et al. Dose-dependent expression of claudin-5 is a modifying factor in schizophrenia. Mol Psychiatry. 2018; 23: 2156-2166. PubMed: https://pubmed.ncbi.nlm.nih.gov/28993710/
  122. Maes M, Vojdani A, Geffard M, et al. Schizophrenia phenomenology comprises a bifactorial general severity and a single-group factor, which are differently associated with neurotoxic immune and immune-regulatory pathways. Biomol Concepts. 2019; 10: 209-225. PubMed: https://pubmed.ncbi.nlm.nih.gov/31734647
  123. Maes M, Sirivichayakul S, Kanchanatawan B, Vodjani A. Breakdown of the Paracellular Tight and Adherens Junctions in the Gut and Blood Brain Barrier and Damage to the Vascular Barrier in Patients with Deficit Schizophrenia. Neurotox Res. 2019; 36: 306-322. PubMed: https://pubmed.ncbi.nlm.nih.gov/31077000/
  124. Raza MW, Shad A, Pedler SJ, Karamat KA. Penetration and activity of antibiotics in brain abscess. J Coll Physicians Surg Pak. 2005; 15: 165–167. PubMed: https://www.ncbi.nlm.nih.gov/m/pubmed/15808097
  125. Yang RC, Qu XY, Xiao SY, Li L, Xu BJ, et al. Meningitic Escherichia coli-induced upregulation of PDGF-B and ICAM-1 aggravates blood-brain barrier disruption and neuroinflammatory response. J Neuroinflammation. 2019; 16: 101. PubMed: https://pubmed.ncbi.nlm.nih.gov/31092253/
  126. Ma Z, Peng J, Yu D, Park JS, Lin H, et al. A streptococcal Fic domain-containing protein disrupts blood-brain barrier integrity by activating moesin in endothelial cells. PLoS Pathog. 2019; 15: e1007737. PubMed: https://pubmed.ncbi.nlm.nih.gov/31071198/
  127. Chen J, Li N, Wang B, Liu X, Liu J, et al. Upregulation of CBP by PLY can cause permeability of blood-brain barrier to increase meningitis. J Biochem Mol Toxicol. 2019; 33: e22333. PubMed: https://pubmed.ncbi.nlm.nih.gov/30980515/
  128. Thorsdottir S, Henriques-Normark B, Iovino F. The Role of Microglia in Bacterial Meningitis: Inflammatory Response, Experimental Models and New Neuroprotective Therapeutic Strategies. Front Microbiol. 2019; 10: 576. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6442515/
  129. Silwedel C, Haarmann A, Fehrholz M, Claus H, Speer CP, et al. More than just inflammation: Ureaplasma species induce apoptosis in human brain microvascular endothelial cells. J Neuroinflammation. 2019; 16: 38. PubMed: https://pubmed.ncbi.nlm.nih.gov/30764830/

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More