Research Article

Characterization of the immune response in neuroimmune disorders in children

Jose Irazuzta* and Nicolas Chiriboga

Published: 20 April, 2021 | Volume 5 - Issue 1 | Pages: 022-025

Background: A misguided auto-reactive injury is responsible for several types of central nervous system (CNS) conditions in pediatrics. We propose that, in some of these conditions, the adaptive immune system has a common cellular immune pathogenesis, driven predominantly by T cells, despite variability on the phenotypical clinical presentation.

Methods: We have characterized the CD4+/CD8+ adaptive immune response (AIR) on pediatric patients presenting with clinical symptoms compatible with Neuroimmune Disorders (NID). Flow cytometry with deep immunophenotyping of T cells was performed on peripheral blood obtained during the acute clinical phase and compared to an age-matched cohort group (Co).

Results: We found that pediatric patients with confirmed NID, exhibit a pattern of dysregulation of CD4+ lineages associated with autoimmune processes.

Discussion: The autoimmune associated CD4+ dysregulation was associated with patients with NID, as compared to healthy controls and patients with non-autoimmune diagnoses. If we can improve our capacity for early accurate diagnosis and meaningful disease monitoring of pathogenic T cell subsets, we can both expedite disease detection and may serve as a guide to the administration of effective immunotherapeutic agents.

Read Full Article HTML DOI: 10.29328/journal.jnnd.1001046 Cite this Article Read Full Article PDF


NID: Neuroimmune Disorders; CNS: Central Nervous System; AIR: Adaptive Immune Response; Flow Cytometry


  1. Bien CG, Vincent A, Barnett MH, Becker AJ, Blümcke I, et al. Immunopathology of autoantibody-associated encephalitides: Clues for Pathogenesis. Brain. 2012; 135: 1622-1638. PubMed: https://pubmed.ncbi.nlm.nih.gov/22539258/
  2. Ramanathan S, Mohammad SS, Brilot F, Dale RC. Autoimmune encephalitis: Recent updates and emerging challenges. J Clin Neurosci. 2014; 21: 722–730. PubMed: https://pubmed.ncbi.nlm.nih.gov/24246947/
  3. Cellucci T, Van Mater H, Graus F, Muscal E, Gallentine W, et al. Clinical approach to the diagnosis of autoimmune encephalitis in the pediatric patient. Neurol Neuroimmunol Neuroinflamm. 2020; 7: e760. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7188473/
  4. Bigi S, Hladio M, Twilt M, Dalmau J, Benseler SM. The growing spectrum of antibody-associated inflammatory brain diseases in children. Neurol Neuroimmunol Neuroinflamm. 2015; 2: e92. PubMed: https://pubmed.ncbi.nlm.nih.gov/25909091/
  5. Neuteboom R, Wilbur C, Van Pelt D, Rodriguez M, Yeh A. The Spectrum of Inflammatory Acquired Demyelinating Syndromes in Children. Semin Pediatr Neurol. 2014; 24: 189–200. PubMed: https://pubmed.ncbi.nlm.nih.gov/29103426/
  6. Dardalhon V, Korn T, Kuchroo VK, Anderson AC. Role of Th1 and Th17 cells in organ-specific autoimmunity. Journal of Autoimmunity. 2008; 31: 252–256. PubMed: https://pubmed.ncbi.nlm.nih.gov/18502610/
  7. Waite JC, Skokos D. Th17 response and inflammatory autoimmune diseases. Int J Inflamm . 2012. 2012:819467. PubMed: https://pubmed.ncbi.nlm.nih.gov/22229105/
  8. Asothai R, Anand V, Das D, Antil PS, Khandpur S, et al. Distinctive Treg associated CCR4-CCL22 expression profile with altered frequency of Th17/Treg cell in the immunopathogenesis of Pemphigus Vulgaris. Immunobiology. 2015; 220: 1129–1135. PubMed: https://pubmed.ncbi.nlm.nih.gov/26093920/
  9. Lepennetier G, Hracsko Z, Unger M, Van Griensven M, Grummel V, et al. Cytokine and immune cell profiling in the cerebrospinal fluid of patients with neuro-inflammatory diseases. J Neuroinflamm. 2019; 16: 219.
  10. Korn T, Kallies A. T cell responses in the central nervous system. Nat Rev Immunol. 2017; 17: 179–194. PubMed: https://pubmed.ncbi.nlm.nih.gov/28138136/
  11. Stockinger B, Veldhoen M, Martin B. Th17 T cells: Linking innate and adaptive immunity. Semin Immunol. 2007; 19: 353–361. PubMed: https://pubmed.ncbi.nlm.nih.gov/18023589/
  12. Bar-Or A, Hintzen RQ, Dale RC, Rostasy K, Brück W, et al. Immunopathophysiology of pediatric CNS inflammatory demyelinating diseases. Neurology. 2016; 87: S12-129. PubMed: https://pubmed.ncbi.nlm.nih.gov/27572856/
  13. Armangue T, Spatola M, Vlagea A, Mattozzi S, Cárceles-Cordon M, et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol. 2018; 17: 760–772. PubMed: https://pubmed.ncbi.nlm.nih.gov/30049614/
  14. Gastaldi M, Thouin A, Vincent A. Antibody-Mediated Autoimmune Encephalopathies and Immunotherapies. Neurotherapeutics. 2016; 13: 147-162. PubMed: https://pubmed.ncbi.nlm.nih.gov/26692392/
  15. Debnath M, Berk M. Th17 pathway-mediated immunopathogenesis of schizophrenia: Mechanisms and implications. Schizophr Bull. 2014; 40: 1412–1421. PubMed: https://pubmed.ncbi.nlm.nih.gov/24711545/
  16. Li S, Jin T, Zhang HL, Yu H, Meng F, et al. Circulating Th17, Th22, and Th1 cells are elevated in the guillain-barr?? syndrome and downregulated by IVIg treatments. Mediators of Inflammation. 2014.
  17. Prasad S, Hu S, Sheng WS, Singh A, Lokensgard JR. Tregs modulate lymphocyte proliferation, activation, and resident-memory T-cell accumulation within the brain during mcmv infection. PLoS ONE. 2015; 10: e0145457. PubMed: https://pubmed.ncbi.nlm.nih.gov/26720146/
  18. Guo H, Xun L, Zhang R, Gou X. Ratio of CD147high/CD147low in CD4+CD25+ T cells: A potential biomarker for early diagnosis and prediction of response to therapy for autoimmune diseases. Med Hypotheses. 2018; 115: 1–4. PubMed: https://pubmed.ncbi.nlm.nih.gov/29685186/
  19. Gastaldi M, Zardini E, Scaranzin S, Uccelli A, Andreetta F, Baggi F, et al. Autoantibody Diagnostics in Neuroimmunology: Experience From the 2018 Italian Neuroimmunology Association External Quality Assessment Program. Front Neurol. 2020; 10: 1385. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971200/


Figure 1

Figure 1

Figure 1

Figure 2

Similar Articles

Recently Viewed

  • Renal neoplasms and computed tomography
    Hajra Idrees, MBBS*, Raza Zarrar, MBBS, Bilal Mujtaba and MD Hajra Idrees, MBBS*,Raza Zarrar, MBBS, MD,Bilal Mujtaba, MD. Renal neoplasms and computed tomography. J Radiol Oncol. 2022: doi: 10.29328/journal.jro.1001043; 6: 022-026
  • Clinical relevance linked to echocardiography diagnosis in Bland, White and Garland syndrome
    Mariela Céspedes Almira*, Adel Eladio González Morejón, Giselle Serrano Ricardo, Mariela Céspedes Almira*, Adel Eladio González Morejón, Giselle Serrano Ricardo and Tania Rosa González Rodríguez Mariela Céspedes Almira*,Adel Eladio González Morejón,Giselle Serrano Ricardo,Tania Rosa González Rodríguez,Mariela Céspedes Almira*,Adel Eladio González Morejón,Giselle Serrano Ricardo,Tania Rosa González Rodríguez. Clinical relevance linked to echocardiography diagnosis in Bland, White and Garland syndrome. J Cardiol Cardiovasc Med. 2020: doi: 10.29328/journal.jccm.1001086; 5: 051-055
  • Drawings as learning aid for the human anatomy students’ based evaluation
    Faaiz Y Alhamdani* and Hatem A Hatem Faaiz Y Alhamdani*,Hatem A Hatem. Drawings as learning aid for the human anatomy students’ based evaluation. J Oral Health Craniofac Sci. 2017: doi: 10.29328/journal.johcs.1001017; 2: 090-095
  • Promising Future in the Detection of Oral Cancer by Using Advance Screening Technology
    Mohamed Yasser Kharma*, Mohamed Sadek Alalwani and Manal Fouad Amer Mohamed Yasser Kharma*,Mohamed Sadek Alalwani,Manal Fouad Amer. Promising Future in the Detection of Oral Cancer by Using Advance Screening Technology . J Oral Health Craniofac Sci. 2016: doi: 10.29328/journal.johcs.1001003; 1: 022-33
  • Menstrual cycle effects on sleep
    Gupta PD* Gupta PD*. Menstrual cycle effects on sleep. Clin J Obstet Gynecol. 2022: doi: 10.29328/journal.cjog.1001105; 5: 042-043

Read More

Most Viewed

Read More