Abstract

Review Article

Role of neuron specific enolase as a biomarker in Parkinson’s disease

Rajib Dutta*

Published: 06 July, 2021 | Volume 5 - Issue 2 | Pages: 061-068

Parkinson’s disease (PD) is thought to be the most common neurodegenerative disease with movement disorder. The key motor symptoms are rigidity, tremor, akinesis/hypokinesia/bradykinesia, and postural instability. However, in our day-to-day clinical practice we tend to see several other symptoms which may be motor or non-motor. Non-motor symptoms (NMS) are quite common and debilitating. The pathological hallmarks of PD are loss of dopaminergic neurons in the substantia nigra pars compacta (SNPc) and accumulation of unfolded or misfolded alpha-synuclein. Diagnosis of PD is difficult in the pre-motor stage. Late diagnosis renders a substantial loss of dopaminergic neurons in SNPc and spread of disease in other parts of the brain. This may manifest as either full blown symptoms requiring multiple medications or may even lead to life threatening condition due to lack of early diagnostic tools and techniques. Biomarkers are required to diagnose PD at a very early stage when prevention is possible. Hence, we see a lot of interest among researchers involved in finding a biomarker specific to the disease. Biomarkers may be clinical, image based, genetic, and biochemical. Cerebrospinal fluid (CSF) and serum markers which may correlate with disease pathophysiology are of great significance. One such molecule which recently gained a lot of attention is neuron-specific enolase (NSE). The main aim of this paper is to highlight the role of NSE in predicting neurodegeneration and neuroinflammation ultimately reflecting damage of brain cells in PD.

Read Full Article HTML DOI: 10.29328/journal.jnnd.1001052 Cite this Article Read Full Article PDF

Keywords:

Cerebrospinal fluid; CSF; Serum; Neuron specific enolase; NSE; Parkinson’s disease

References

  1. DeMaagd G, Philip A. Parkinson's Disease and Its Management: Part 1: Disease Entity, Risk Factors, Pathophysiology, Clinical Presentation, and Diagnosis. P T. 2015; 4: 504-532. PubMed: https://pubmed.ncbi.nlm.nih.gov/26236139/
  2. Stefanis L. α-Synuclein in Parkinson's disease. Cold Spring Harb Perspect Med. 2012; 2: a009399. PubMed: https://pubmed.ncbi.nlm.nih.gov/22355802/
  3. Xu L, Pu J. Alpha-Synuclein in Parkinson's Disease: From Pathogenetic Dysfunction to Potential Clinical Application. Parkinsons Dis. 2016; 2016: 1720621. PubMed: https://pubmed.ncbi.nlm.nih.gov/27610264/
  4. Lee A, Gilbert RM. Epidemiology of Parkinson Disease. Neurol Clin. 2016; 34: 955-965. PubMed: https://pubmed.ncbi.nlm.nih.gov/27720003/
  5. von Campenhausen S, Bornschein B, Wick R, et al. Prevalence and incidence of Parkinson's disease in Europe. Eur Neuropsychopharmacol. 2005; 15: 473-490. PubMed: https://pubmed.ncbi.nlm.nih.gov/15963700/
  6. Reeve A, Simcox E, Turnbull D. Ageing and Parkinson's disease: why is advancing age the biggest risk factor?. Ageing Res Rev. 2014; 14: 19-30. PubMed: https://pubmed.ncbi.nlm.nih.gov/24503004/
  7. Cerri S, Mus L, Blandini F. Parkinson's Disease in Women and Men: What's the Difference? J Parkinsons Dis. 2019; 9: 501-515. PubMed: https://pubmed.ncbi.nlm.nih.gov/31282427/
  8. Breckenridge CB, Berry C, Chang ET, Sielken RL Jr, Mandel JS. Association between Parkinson's Disease and Cigarette Smoking, Rural Living, Well-Water Consumption, Farming and Pesticide Use: Systematic Review and Meta-Analysis. PLoS One. 2016; 11: e0151841. PubMed: https://pubmed.ncbi.nlm.nih.gov/27055126/
  9. Ball N, Teo WP, Chandra S, Chapman J. Parkinson's Disease and the Environment. Front Neurol. 2019; 10: 218.
  10. Gronich N, Abernethy DR, Auriel E, Lavi I, Rennert G, Saliba W. β2-adrenoceptor agonists and antagonists and risk of Parkinson's disease. Mov Disord. 2018; 33: 1465-1471. PubMed: https://pubmed.ncbi.nlm.nih.gov/30941085/
  11. Mittal S, Bjørnevik K, Im DS, Flierl A, Dong X, et al. β2-Adrenoreceptor is a regulator of the α-synuclein gene driving risk of Parkinson's disease. Science. 2017; 357: 891-898. PubMed: https://pubmed.ncbi.nlm.nih.gov/28860381/
  12. Bai S, Song Y, Huang X, Peng L, Jia J, et al. Statin Use and the Risk of Parkinson's Disease: An Updated Meta-Analysis. PLoS One. 2016; 11: e0152564. PubMed: https://pubmed.ncbi.nlm.nih.gov/27019096/
  13. Yan J, Qiao L, Tian J, et al. Liu A, Wu J, et al. Effect of statins on Parkinson's disease: A systematic review and meta-analysis. Medicine (Baltimore). 2019; 98: e14852. PubMed: https://pubmed.ncbi.nlm.nih.gov/30896628/
  14. Palacios N, Gao X, McCullough ML, Schwarzschild MA, Shah R, et al. Caffeine and risk of Parkinson's disease in a large cohort of men and women. Mov Disord. 2012; 27: 1276-1282. PubMed: https://pubmed.ncbi.nlm.nih.gov/22927157/
  15. Hong CT, Chan L, Bai CH. The Effect of Caffeine on the Risk and Progression of Parkinson's Disease: A Meta-Analysis. Nutrients. 2020; 12: 1860. PubMed: https://pubmed.ncbi.nlm.nih.gov/32580456/
  16. Gudala K, Kanukula R, Bansal D. Reduced Risk of Parkinson's Disease in Users of Calcium Channel Blockers: A Meta-Analysis. Int J Chronic Dis. 2015; 2015: 697404. PubMed: https://pubmed.ncbi.nlm.nih.gov/26464872/
  17. Alonso A, Rodríguez LA, Logroscino G, Hernán MA. Gout and risk of Parkinson disease: a prospective study. Neurology. 2007; 69: 1696-1700. PubMed: https://pubmed.ncbi.nlm.nih.gov/17954784/
  18. Ungprasert P, Srivali N, Thongprayoon C. Gout is not associated with a lower risk of Parkinson's disease: A systematic review and meta-analysis. Parkinsonism Relat Disord. 2015; 21: 1238-1242. PubMed: https://pubmed.ncbi.nlm.nih.gov/26330027/
  19. Singh JA, Cleveland JD. Gout and the risk of Parkinson's disease in older adults: a study of U.S. Medicare data. BMC Neurol. 2019; 19: 4. PubMed: https://pubmed.ncbi.nlm.nih.gov/30611222/
  20. De Vera M, Rahman MM, Rankin J, Kopec J, Gao X, et al. Gout and the risk of Parkinson's disease: a cohort study. Arthritis Rheum. 2008; 59: 1549-1554. PubMed: https://pubmed.ncbi.nlm.nih.gov/18975349/
  21. Becker C, Jick SS, Meier CR. NSAID use and risk of Parkinson disease: a population-based case-control study. Eur J Neurol. 2011; 18: 1336-1342. PubMed: https://pubmed.ncbi.nlm.nih.gov/21457177/
  22. Gagne JJ, Power MC. Anti-inflammatory drugs and risk of Parkinson disease: a meta-analysis. Neurology. 2010; 74: 995-1002. PubMed: https://pubmed.ncbi.nlm.nih.gov/20308684/
  23. Ren L, Yi J, Yang J, Li P, Cheng X, Mao P. Nonsteroidal anti-inflammatory drugs use and risk of Parkinson disease: A dose-response meta-analysis. Medicine (Baltimore). 2018; 97: e12172. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155958/
  24. Poly TN, Islam MMR, Yang HC, Li YJ. Non-steroidal anti-inflammatory drugs and risk of Parkinson's disease in the elderly population: a meta-analysis. Eur J Clin Pharmacol. 2019; 75: 99-108. PubMed: https://pubmed.ncbi.nlm.nih.gov/30280208/
  25. Torti M, Fossati C, Casali M, De Pandis MF, Grassini P, et al. Effect of family history, occupation and diet on the risk of Parkinson disease: A case-control study. PLoS One. 2020; 15: e0243612. PubMed: https://pubmed.ncbi.nlm.nih.gov/33332388/
  26. Shino MY, McGuire V, Van Den Eeden SK, et al. Familial aggregation of Parkinson's disease in a multiethnic community-based case-control study. Mov Disord. 2010; 25: 2587-2594. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978761/
  27. Liu FC, Lin HT, Kuo CF, Hsieh MY, See LC, et al. Familial aggregation of Parkinson's disease and coaggregation with neuropsychiatric diseases: a population-based cohort study. Clin Epidemiol. 2018; 10: 631-641. PubMed: https://pubmed.ncbi.nlm.nih.gov/29881310/
  28. Klein C, Westenberger A. Genetics of Parkinson's disease. Cold Spring Harb Perspect Med. 2012; 2: a008888. PubMed: https://pubmed.ncbi.nlm.nih.gov/22315721/
  29. Pankratz N, Foroud T. Genetics of Parkinson disease. Genet Med. 2007; 9: 801-811. PubMed: https://pubmed.ncbi.nlm.nih.gov/18091429/
  30. Karimi-Moghadam A, Charsouei S, Bell B, Jabalameli MR. Parkinson Disease from Mendelian Forms to Genetic Susceptibility: New Molecular Insights into the Neurodegeneration Process. Cell Mol Neurobiol. 2018; 38: 1153-1178. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6061130/
  31. Cornelis Blauwendraat, Mike A Nalls, Andrew B Singleton. The genetic architecture of Parkinson's disease. 2020; 19: 170-178. PubMed: https://pubmed.ncbi.nlm.nih.gov/31521533/
  32. Bandres-Ciga S, Diez-Fairen M, Kim JJ, Singleton AB. Genetics of Parkinson's disease: An introspection of its journey towards precision medicine. Neurobiol Dis. 2020; 137: 104782. PubMed: https://pubmed.ncbi.nlm.nih.gov/31991247/
  33. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, et al. MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord. 2015; 30: 1591-1601. PubMed: https://pubmed.ncbi.nlm.nih.gov/26474316/
  34. Moustafa AA, Chakravarthy S, Phillips JR, Gupta A, Keri S, et al. Motor symptoms in Parkinson's disease: A unified framework. Neurosci Biobehav Rev. 2016; 68: 727-740. PubMed: https://pubmed.ncbi.nlm.nih.gov/27422450/
  35. Pfeiffer RF. Non-motor symptoms in Parkinson's disease. Parkinsonism Relat Disord. 2016; 22 Suppl 1: S119-S122. PubMed: https://pubmed.ncbi.nlm.nih.gov/26372623/
  36. Poewe W. Non-motor symptoms in Parkinson's disease. Eur J Neurol. 2008; 15 Suppl 1: 14-20. PubMed: https://pubmed.ncbi.nlm.nih.gov/18353132/
  37. Pappala K, Garuda BR, Seepana G, Thalabaktula SK, Uppaturi AK. Non-motor symptoms of Parkinson’s disease: its prevalence across various stages and its correlation with the severity of the disease and quality of life. Ann Mov Disord 2019; 2: 102-8
  38. Caproni S, Colosimo C. Diagnosis and Differential Diagnosis of Parkinson Disease. Clin Geriatr Med. 2020; 36: 13-24. PubMed: https://pubmed.ncbi.nlm.nih.gov/31733693/
  39. Heim B, Krismer F, De Marzi R, Seppi K. Magnetic resonance imaging for the diagnosis of Parkinson's disease. J Neural Transm (Vienna). 2017; 124: 915-964. PubMed: https://pubmed.ncbi.nlm.nih.gov/28378231/
  40. Walker Z, Gandolfo F, Orini S, et al. Clinical utility of FDG PET in Parkinson's disease and atypical parkinsonism associated with dementia. Eur J Nucl Med Mol Imaging. 2018; 45: 1534-1545. PubMed: https://pubmed.ncbi.nlm.nih.gov/29779045/
  41. Wang L, Zhang Q, Li H, Zhang H. SPECT molecular imaging in Parkinson's disease. J Biomed Biotechnol. 2012; 2012: 412486. PubMed: https://pubmed.ncbi.nlm.nih.gov/22529704/
  42. Nagayama H, Hamamoto M, Ueda M, Nagashima J, Katayama Y. Reliability of MIBG myocardial scintigraphy in the diagnosis of Parkinson's disease. J Neurol Neurosurg Psychiatry. 2005; 76: 249-251. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1739515/
  43. Sakakibara R, Tateno F, Kishi M, Tsuyusaki Y, Terada H, et al. MIBG myocardial scintigraphy in pre-motor Parkinson's disease: a review. Parkinsonism Relat Disord. 2014; 20: 267-273. PubMed: https://pubmed.ncbi.nlm.nih.gov/24332912/
  44. Jäkel S, Dimou L. Glial Cells and Their Function in the Adult Brain: A Journey through the History of Their Ablation. Front Cell Neurosci. 2017; 11: 24. PubMed: https://pubmed.ncbi.nlm.nih.gov/28243193/
  45. Giaume C, Kirchhoff F, Matute C, Reichenbach A, Verkhratsky A. Glia: the fulcrum of brain diseases. Cell Death Differ. 2007; 14: 1324-1335. PubMed: https://pubmed.ncbi.nlm.nih.gov/17431421/
  46. Tremblay ME, Cookson MR, Civiero L. Glial phagocytic clearance in Parkinson's disease. Mol Neurodegener. 2019; 14: 16.
  47. Kam TI, Hinkle JT, Dawson TM, Dawson VL. Microglia and astrocyte dysfunction in parkinson's disease. Neurobiol Dis. 2020; 144: 105028. PubMed: https://pubmed.ncbi.nlm.nih.gov/32736085/
  48. Ross GW, Petrovitch H, Abbott RD, Nelson J, Markesbery W, et al. Parkinsonian signs and substantia nigra neuron density in decendents elders without PD. Ann Neurol. 2004; 56: 532-539. PubMed: https://pubmed.ncbi.nlm.nih.gov/15389895/
  49. Lang AE, Lozano AM. Parkinson's disease. First of two parts. N Engl J Med. 1998; 339: 1044-1053. PubMed: https://pubmed.ncbi.nlm.nih.gov/9761807/
  50. Dauer W, Przedborski S. Parkinson's disease: mechanisms and models. Neuron. 2003; 39: 889-909. PubMed: https://pubmed.ncbi.nlm.nih.gov/12971891/
  51. Hartmann A. Postmortem studies in Parkinson's disease. Dialogues Clin Neurosci. 2004; 6: 281-293. PubMed: https://pubmed.ncbi.nlm.nih.gov/22033507/
  52. Kuter K, Olech Ł, Głowacka U. Prolonged Dysfunction of Astrocytes and Activation of Microglia Accelerate Degeneration of Dopaminergic Neurons in the Rat Substantia Nigra and Block Compensation of Early Motor Dysfunction Induced by 6-OHDA. Mol Neurobiol. 2018; 55: 3049-3066. PubMed: https://pubmed.ncbi.nlm.nih.gov/28466266/
  53. Rappold PM, Tieu K. Astrocytes and therapeutics for Parkinson's disease. Neurotherapeutics. 2010; 7: 413-423. PubMed: https://pubmed.ncbi.nlm.nih.gov/20880505/
  54. Miyazaki I, Asanuma M. Neuron-Astrocyte Interactions in Parkinson's Disease. Cells. 2020; 9: 2623. PubMed: https://pubmed.ncbi.nlm.nih.gov/33297340/
  55. Morales I, Sanchez A, Rodriguez-Sabate C, Rodriguez M. Striatal astrocytes engulf dopaminergic debris in Parkinson's disease: A study in an animal model. PLoS One. 2017; 12: e0185989. PubMed: https://pubmed.ncbi.nlm.nih.gov/29028815/
  56. Sonninen TM, Hämäläinen RH, Koskuvi M, Oksanen M, Shakirzyanova A, et al. Metabolic alterations in Parkinson's disease astrocytes. Sci Rep. 2020; 10: 14474. PubMed: https://pubmed.ncbi.nlm.nih.gov/32879386/
  57. Katayama T, Sawada J, Takahashi K, Yahara O. Cerebrospinal Fluid Biomarkers in Parkinson's Disease: A Critical Overview of the Literature and Meta-Analyses. Brain Sci. 2020; 10: 466. PubMed: https://pubmed.ncbi.nlm.nih.gov/32698474/
  58. Papuć E, Rejdak K. Increased CSF NFL in Non-demented Parkinson's Disease Subjects Reflects Early White Matter Damage. Front Aging Neurosci. 2020; 12: 128. PubMed: https://pubmed.ncbi.nlm.nih.gov/32477099/
  59. Bäckström D, Linder J, Jakobson Mo S, Riklund K, Zetterberg H, et al. NfL as a biomarker for neurodegeneration and survival in Parkinson disease. Neurology. 2020; 95: e827-e838. PubMed: https://pubmed.ncbi.nlm.nih.gov/32680941/
  60. Schmechel D, Marangos PJ, Zis AP, Brightman M, Goodwin FK. Brain endolases as specific markers of neuronal and glial cells. Science. 1978; 199: 313-315. PubMed: https://pubmed.ncbi.nlm.nih.gov/339349/
  61. Schmechel DE, Marangos PJ, Martin BM, Winfield S, Burkhart DS, et al. Localization of neuron-specific enolase (NSE) mRNA in human brain. Neurosci Lett. 1987; 76: 233-238. PubMed: https://pubmed.ncbi.nlm.nih.gov/3587757/
  62. Haque A, Ray SK, Cox A, Banik NL. Neuron specific enolase: a promising therapeutic target in acute spinal cord injury. Metab Brain Dis. 2016; 31: 487-495. PubMed: https://pubmed.ncbi.nlm.nih.gov/26847611/
  63. Vizin T, Kos J. Gamma-enolase: a well-known tumour marker, with a less-known role in cancer. Radiol Oncol. 2015; 49: 217-226. PubMed: https://pubmed.ncbi.nlm.nih.gov/26401126/
  64. Dichev V, Kazakova M, Sarafian V. YKL-40 and neuron-specific enolase in neurodegeneration and neuroinflammation. Rev Neurosci. 2020; 31: 539-553. PubMed: https://pubmed.ncbi.nlm.nih.gov/32045356/
  65. Massabki PS, Silva NP, Lourenço DM, Andrade LE. Neuron specific enolase concentration is increased in serum and decreased in platelets of patients with active systemic sclerosis. J Rheumatol. 2003; 30: 2606-2612. PubMed: https://pubmed.ncbi.nlm.nih.gov/14719201/
  66. Xu CM, Luo YL, Li S, L ZX, Jiang L, et al. Multifunctional neuron-specific enolase: its role in lung diseases. Biosci Rep. 2019; 39: BSR20192732. PubMed: https://pubmed.ncbi.nlm.nih.gov/31642468/
  67. Kawata K, Liu CY, Merkel SF, Ramirez SH, Tierney RT, Langford D. Blood biomarkers for brain injury: What are we measuring? Neurosci Biobehav Rev. 2016; 68: 460-473. PubMed: https://pubmed.ncbi.nlm.nih.gov/27181909/
  68. Haque A, Polcyn R, Matzelle D, Banik NL. New Insights into the Role of Neuron-Specific Enolase in Neuro-Inflammation, Neurodegeneration, and Neuroprotection. Brain Sci. 2018; 8: 33. PubMed: https://pubmed.ncbi.nlm.nih.gov/29463007/
  69. Polcyn R, Capone M, Hossain A, Matzelle D, Banik NL, et al. Neuron specific enolase is a potential target for regulating neuronal cell survival and death: implications in neurodegeneration and regeneration. Neuroimmunol Neuroinflamm. 2017; 4: 254-257. PubMed: https://pubmed.ncbi.nlm.nih.gov/29423430/
  70. Cheng F, Yuan Q, Yang J, Wang W, Liu H. The prognostic value of serum neuron-specific enolase in traumatic brain injury: systematic review and meta-analysis. PLoS One. 2014; 9: e106680. PubMed: https://pubmed.ncbi.nlm.nih.gov/25188406/
  71. Thelin EP, Jeppsson E, Frostell A, Svensson M, Mondello S, et al. Utility of neuron-specific enolase in traumatic brain injury; relations to S100B levels, outcome, and extracranial injury severity. Crit Care. 2016; 20: 285. PubMed: https://pubmed.ncbi.nlm.nih.gov/27604350/
  72. Missler U, Wiesmann M, Friedrich C, Kaps M. S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke. 1997; 28: 1956-1960. PubMed: https://pubmed.ncbi.nlm.nih.gov/9341703/
  73. Pandey A, Saxena K, Verma M, Bharosay A. Correlative study between neuron-specific enolase and blood sugar level in ischemic stroke patients. J Neurosci Rural Pract. 2011; 2: 50-54. PubMed: https://pubmed.ncbi.nlm.nih.gov/21716874/
  74. Oh S, Lee J, Na S, Park J, Choi Y, et al. Prediction of Early Clinical Severity and Extent of Neuronal Damage in Anterior-Circulation Infarction Using the Initial Serum Neuron-Specific Enolase Level. Arch Neurol. 2003; 60: 37–41. PubMed: https://pubmed.ncbi.nlm.nih.gov/12533086/
  75. Zaheer S, Beg M, Rizvi I, Islam N, Ullah E, et al. Correlation between serum neuron specific enolase and functional neurological outcome in patients of acute ischemic stroke. Ann Indian Acad Neurol. 2013; 16: 504-508. PubMed: https://pubmed.ncbi.nlm.nih.gov/24339568/
  76. Shash, M.H., Abdelrazek, R., Abdelgeleel, N.M. et al. Validity of neuron-specific enolase as a prognostic tool in acute ischemic stroke in adults at Suez Canal University Hospital. Egypt J Neurol Psychiatry Neurosurg.2021; 57: 30.
  77. El-Maraghi S, Heba H, Hazema H, Ahmed Y, Hossam M. The prognostic value of neuron specific enolase in head injury. Egyptian J Crit Care Med. 2013: 1; 25-32.
  78. Palumbo B, Siepi D, Sabalich I, Tranfaglia C, Parnetti L. Cerebrospinal fluid neuron-specific enolase: a further marker of Alzheimer's disease?. Funct Neurol. 2008; 23: 93-96. PubMed: https://pubmed.ncbi.nlm.nih.gov/18671910/
  79. Schmidt FM, Mergl R, Stach B, Jahn I, Gertz HJ, et al. Elevated levels of cerebrospinal fluid neuron-specific enolase (NSE) in Alzheimer's disease. Neurosci Lett. 2014; 570: 81-85. PubMed: https://pubmed.ncbi.nlm.nih.gov/24746933/
  80. Abdo WF, De Jong D, Hendriks JC, Horstink MWIM, Kremer BPH, et al. Cerebrospinal fluid analysis differentiates multiple system atrophy from Parkinson's disease. Mov Disord. 2004; 19: 571-579. PubMed: https://pubmed.ncbi.nlm.nih.gov/15133823/
  81. Schaf DV, Tort AB, Fricke D, Schestatsky P, Portela LVC, et al. S100B and NSE serum levels in patients with Parkinson's disease. Parkinsonism Relat Disord. 2005; 11: 39-43. PubMed: https://pubmed.ncbi.nlm.nih.gov/15619461/
  82. Katayama T, Sawada J, Kikuchi-Takeguchi S, Kano K, Takahashi K, et al. Cerebrospinal fluid levels of alpha-synuclein, amyloid β, tau, phosphorylated tau, and neuron-specific enolase in patients with Parkinson's disease, dementia with Lewy bodies or other neurological disorders: Their relationships with cognition and nuclear medicine imaging findings. Neurosci Lett. 2020; 715: 134564. PubMed: https://pubmed.ncbi.nlm.nih.gov/31733322/
  83. Papuć E, Rejdak K. Increased Cerebrospinal Fluid S100B and NSE Reflect Neuronal and Glial Damage in Parkinson's Disease. Front Aging Neurosci. 2020; 12: 156. PubMed: https://pubmed.ncbi.nlm.nih.gov/32792937/
  84. Isgrò MA, Bottoni P, Scatena R. Neuron-Specific Enolase as a Biomarker: Biochemical and Clinical Aspects. Adv Exp Med Biol. 2015; 867: 125-143. PubMed: https://pubmed.ncbi.nlm.nih.gov/26530364/
  85. Liu L, Teng J, Zhang L, Cong P, Yao Y, et al. The Combination of the Tumor Markers Suggests the Histological Diagnosis of Lung Cancer. Biomed Res Int. 2017; 2017: 2013989. PubMed: https://pubmed.ncbi.nlm.nih.gov/28607926/
  86. Genet SAAM, Visser E, van den Borne BEEM, Youssef-El Soud M, Belderbos HNA, et al. Correction of the NSE concentration in hemolyzed serum samples improves its diagnostic accuracy in small-cell lung cancer. Oncotarget. 2020; 11: 2660-2668. PubMed: https://pubmed.ncbi.nlm.nih.gov/32676167/
  87. Ferrigno D, Buccheri G, Giordano C. Neuron-specific enolase is an effective tumour marker in non-small cell lung cancer (NSCLC). Lung Cancer. 2003; 41: 311-320. PubMed: https://pubmed.ncbi.nlm.nih.gov/12928122/
  88. Xu L, Lina W, Xuejun Y. The diagnostic value of serum CEA, NSE and MMP-9 for on-small cell lung cancer. Open Med (Wars). 2016; 11: 59-62. PubMed: https://pubmed.ncbi.nlm.nih.gov/28352768/
  89. Sansone A, Lauretta R, Vottari S, Chiefari A, Barnabei A, et al. Specific and Non-Specific Biomarkers in Neuroendocrine Gastroenteropancreatic Tumors. Cancers (Basel). 2019; 11: 1113. PubMed: https://pubmed.ncbi.nlm.nih.gov/31382663/
  90. Bocchini M, Nicolini F, Severi S, Bongiovanni A, Ibrahim T, et al. Biomarkers for Pancreatic Neuroendocrine Neoplasms (PanNENs) Management-An Updated Review. Front Oncol. 2020; 10: 831. PubMed: https://pubmed.ncbi.nlm.nih.gov/32537434/
  91. Georgantzi K, Sköldenberg EG, Stridsberg M, Kogner P, Jakobson A, et al. Chromogranin A and neuron-specific enolase in neuroblastoma: Correlation to stage and prognostic factors. Pediatr Hematol Oncol. 2018; 35: 156-165. PubMed: https://pubmed.ncbi.nlm.nih.gov/29737901/
  92. Grouzmann E, Gicquel C, Plouin PF, Schlumberger M, Comoy E, et al. Neuropeptide Y and neuron-specific enolase levels in benign and malignant pheochromocytomas. Cancer. 1990; 66: 1833-1835.
  93. Liu S, Song A, Zhou X, Kong X, Li WA, et al. Malignant pheochromocytoma with multiple vertebral metastases causing acute incomplete paralysis during pregnancy: Literature review with one case report. Medicine (Baltimore). 2017; 96(44): e8535. PubMed: https://pubmed.ncbi.nlm.nih.gov/29095319/
  94. Mokuno K, Kiyosawa K, Sugimura K, Yasuda T, Riku S, et al. Prognostic value of cerebrospinal fluid neuron-specific enolase and S-100b protein in Guillain-Barré syndrome. Acta Neurol Scand. 1994; 89: 27-30. PubMed: https://pubmed.ncbi.nlm.nih.gov/8178624/
  95. Vermuyten K. Determination of glial fibrillary acidic protein, S100, myelin basic protein and neuron specific enolase in cerebrospinal fluid from patients suffering from dementia. Acta Neurol Belg. 1989; 89: 318. PubMed: https://pubmed.ncbi.nlm.nih.gov/2483491/
  96. Aksamit AJ Jr, Preissner CM, Homburger HA. Quantitation of 14-3-3 and neuron-specific enolase proteins in CSF in Creutzfeldt-Jakob disease. Neurology. 2001; 57: 728-730. PubMed: https://pubmed.ncbi.nlm.nih.gov/11524493/
  97. Kohira I, Tsuji T, Ishizu H, Takao Y, Wake A, et al. Elevation of neuron-specific enolase in serum and cerebrospinal fluid of early stage Creutzfeldt-Jakob disease. Acta Neurol Scand. 2000; 102: 385-387. PubMed: https://pubmed.ncbi.nlm.nih.gov/11125754/
  98. Cunningham RT, Johnston CF, Irvine GB, Buchanan KD. Serum neurone-specific enolase levels in patients with neuroendocrine and carcinoid tumours. Clin Chim Acta. 1992; 212: 123-131. PubMed: https://pubmed.ncbi.nlm.nih.gov/1477975/
  99. Yoshida M, Koshiyama M, Konishi M, Fujii H, Nanno H, et al. Ovarian dysgerminoma showing high serum levels and positive immunostaining of placental alkaline phosphatase and neuron-specific enolase associated with elevation of serum prolactin level. Eur J Obstet Gynecol Reprod Biol. 1998; 81: 123-128. PubMed: https://pubmed.ncbi.nlm.nih.gov/9846727/
  100. Tatekawa Y, Kemmotsu H, Mouri T, Joe K, Ohkawa H. A case of pediatric ovarian dysgerminoma associated with high serum levels and positive immunohistochemical staining of neuron-specific enolase. J Pediatr Surg. 2004; 39: 1437-1439. PubMed: https://pubmed.ncbi.nlm.nih.gov/15359410/
  101. Kawata M, Sekiya S, Hatakeyama R, Takamizawa H. Neuron-specific enolase as a serum marker for immature teratoma and dysgerminoma. Gynecol Oncol. 1989; 32: 191-197. PubMed: https://pubmed.ncbi.nlm.nih.gov/2910781/
  102. Sato K, Fukuzawa T, Motoshi W, Sasaki H, Kudo H, et al. Rapidly growing immature retroperitoneal teratoma in a neonate. J Pediat Surg Case Rep. 2021; 69: 101891.
  103. van Veenendaal LM, Bertolli E, Korse CM, Klop WMC, Tesselaar MET, van Akkooi ACJ. The Clinical Utility of Neuron-Specific Enolase (NSE) Serum Levels as a Biomarker for Merkel Cell Carcinoma (MCC). Ann Surg Oncol. 2021; 28: 1019-1028. PubMed: https://pubmed.ncbi.nlm.nih.gov/32529274/
  104. Sato S, Kato J, Sawada M, Horimoto K, Okura M, et al. Usefulness of neuron-specific enolase as a serum marker of metastatic melanoma. J Dermatol. 2020; 47: 1141-1148. PubMed: https://pubmed.ncbi.nlm.nih.gov/32734632/
  105. Fosså SD, Klepp O, Paus E. Neuron-specific enolase--a serum tumour marker in seminoma? Br J Cancer. 1992; 65: 297-299. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1977726/
  106. Ronkainen H, Soini Y, Vaarala MH, Kauppila S, Hirvikoski P. Evaluation of neuroendocrine markers in renal cell carcinoma. Diagn Pathol. 2010; 5: 28. PubMed: https://pubmed.ncbi.nlm.nih.gov/20462442/
  107. Kunda S, LaFrance-Corey RG, Khadjevand F, Worrell GA, Howe CL. Systemic evidence of acute seizure-associated elevation in serum neuronal injury biomarker in patients with temporal lobe epilepsy. Acta Epileptologica.2019; 1: 20
  108. Shaik AJ, Reddy K, Mohammed N, Tandra SR, Rukmini Mridula Kandadai, Baba Kss S. Neuron specific enolase as a marker of seizure related neuronal injury. Neurochem Int. 2019; 131: 104509. PubMed: https://pubmed.ncbi.nlm.nih.gov/31404559/
  109. Daubin C, Quentin C, Allouche S, Etard O, Gaillard C, et al. Serum neuron-specific enolase as predictor of outcome in comatose cardiac-arrest survivors: a prospective cohort study. BMC Cardiovasc Disord. 2011; 11: 48. PubMed: https://pubmed.ncbi.nlm.nih.gov/21824428/
  110. Vondrakova D, Kruger A, Janotka M, Malek F, Dudkova V, et al. Association of neuron-specific enolase values with outcomes in cardiac arrest survivors is dependent on the time of sample collection. Crit Care. 2017; 21: 172. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501942/
  111. Reisinger J, Höllinger K, Lang W, Steiner C, Winter T, et al. Prediction of neurological outcome after cardiopulmonary resuscitation by serial determination of serum neuron-specific enolase. Eur Heart J. 2007; 28: 52-58. PubMed: https://pubmed.ncbi.nlm.nih.gov/17060343/
  112. Stammet P, Collignon O, Hassager C, Wise MP, Hovdenes J, et al. Neuron-Specific Enolase as a Predictor of Death or Poor Neurological Outcome After Out-of-Hospital Cardiac Arrest and Targeted Temperature Management at 33°C and 36°C. J Am Coll Cardiol. 2015; 65: 2104-2114. PubMed: https://pubmed.ncbi.nlm.nih.gov/25975474/
  113. Rech TH, Vieira SR, Nagel F, Brauner JS, Scalco R. Serum neuron-specific enolase as early predictor of outcome after in-hospital cardiac arrest: a cohort study. Crit Care. 2006; 10: R133. PubMed: https://pubmed.ncbi.nlm.nih.gov/16978415/
  114. León-Lozano MZ, Arnaez J, Valls A, et al. Cerebrospinal fluid levels of neuron-specific enolase predict the severity of brain damage in newborns with neonatal hypoxic-ischemic encephalopathy treated with hypothermia. PLoS One. 2020; 15: e0234082. PubMed: https://pubmed.ncbi.nlm.nih.gov/32479533/
  115. Kelen D, Andorka C, Szabó M, Alafuzoff A, Kaila K, Summanen M. Serum copeptin and neuron specific enolase are markers of neonatal distress and long-term neurodevelopmental outcome. PLoS One. 2017; 12: e0184593. PubMed: https://pubmed.ncbi.nlm.nih.gov/28931055/
  116. Douglas-Escobar M, Weiss MD. Biomarkers of hypoxic-ischemic encephalopathy in newborns. Front Neurol. 2012; 3: 144. PubMed: https://pubmed.ncbi.nlm.nih.gov/23130015/
  117. Loy DN, Sroufe AE, Pelt JL, Burke DA, Cao QL, et al. Serum biomarkers for experimental acute spinal cord injury: rapid elevation of neuron-specific enolase and S-100beta. Neurosurgery. 2005; 56: 391-397. PubMed: https://pubmed.ncbi.nlm.nih.gov/15670387/
  118. Pouw M, Hosman A, van Middendorp J, Verbeek MM, Vos PE, et al. Biomarkers in spinal cord injury. Spinal Cord. 2009; 47: 519–525. PubMed: https://pubmed.ncbi.nlm.nih.gov/19153591/ 
  119. Li M, Wen H, Yan Z, Ding T, Long L, et al. Temporal-spatial expression of ENOLASE after acute spinal cord injury in adult rats. Neurosci Res. 2014; 79: 76-82. PubMed: https://pubmed.ncbi.nlm.nih.gov/24321872/
  120. Fang C, Lv L, Mao S, Dong H, Liu B. Cognition Deficits in Parkinson's Disease: Mechanisms and Treatment. Parkinsons Dis. 2020; 2020: 2076942. PubMed: https://pubmed.ncbi.nlm.nih.gov/32269747/
  121. Prakash KG, Bannur BM, Chavan MD, Saniya K, Sailesh KS, et al. Neuroanatomical changes in Parkinson's disease in relation to cognition: An update. J Adv Pharm Technol Res. 2016; 7: 123-126. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052937/
  122. Halliday GM, Holton JL, Revesz T, Dickson DW. Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathol. 2011; 122: 187-204. PubMed: https://pubmed.ncbi.nlm.nih.gov/21720849/
  123. Jellinger KA. Is Braak staging valid for all types of Parkinson's disease? J Neural Transm (Vienna). 2019; 126: 423-431. PubMed: https://pubmed.ncbi.nlm.nih.gov/29943229/
  124. Dickson DW, Uchikado H, Fujishiro H, Tsuboi Y. Evidence in favor of Braak staging of Parkinson's disease. Mov Disord. 2010; 25 Suppl 1: S78-S82. PubMed: https://pubmed.ncbi.nlm.nih.gov/20187227/
  125. Rietdijk CD, Perez-Pardo P, Garssen J, van Wezel RJ, Kraneveld AD. Exploring Braak's Hypothesis of Parkinson's Disease. Front Neurol. 2017; 8: 37. PubMed: https://pubmed.ncbi.nlm.nih.gov/28243222/
  126. Jamwal S, Kumar P. Insight Into the Emerging Role of Striatal Neurotransmitters in the Pathophysiology of Parkinson's Disease and Huntington's Disease: A Review. Curr Neuropharmacol. 2019; 17: 165-175. PubMed: https://pubmed.ncbi.nlm.nih.gov/29512464/
  127. Sabbagh MN, Adler CH, Lahti TJ, Connor DJ, Vedders L, et al. Parkinson disease with dementia: comparing patients with and without Alzheimer pathology. Alzheimer Dis Assoc Disord. 2009; 23: 295-297. PubMed: https://pubmed.ncbi.nlm.nih.gov/19812474/
  128. Irwin DJ, Lee VM, Trojanowski JQ. Parkinson's disease dementia: convergence of α-synuclein, tau and amyloid-β pathologies. Nat Rev Neurosci. 2013; 14: 626-636. PubMed: https://pubmed.ncbi.nlm.nih.gov/23900411/

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More