Protection from the Pathogenesis of Neurodegenerative Disorders, including Alzheimer’s Disease, Amyotrophic Lateral Sclerosis, Huntington’s Disease, and Parkinson’s Diseases, through the Mitigation of Reactive Oxygen Species

Main Article Content

Samskruthi Madireddy
Sahithi Madireddy

Abstract

The biological changes caused by oxidative stress (OS) are known to be involved in the etiology of neurodegenerative disorders, including Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and Parkinson’s disease. The brain is particularly vulnerable to OS due to its high lipid content and extensive consumption of oxygen. OS processes, particularly the excessive production of reactive oxygen species (ROS), play a critical role in how neurodegenerative disorders develop. This is evidenced by in vivo studies investigating various biomolecules related to OS, such as products of lipid and DNA oxidation. Accordingly, ROS can also cause oxidative-related damage in neurodegenerative disorders, including dopamine auto-oxidation, mitochondrial dysfunction, glial cell activation, α-synuclein aggregation, excessive free iron, and changes in calcium signaling. Furthermore, excessive levels of cellular oxidants reduce antioxidant defenses, which in turn propagate the cycle of OS. As such, it is increasingly important to determine the linkage between a high intake of antioxidants through dietary interventions and a lower risk of developing neurodegenerative diseases. Indeed, in addition to modulating the immune system, optimal nutritional status is capable of changing various processes of neuroinflammation known to be involved in the pathogenesis of neurodegeneration. Accordingly, a better understanding of the role ROS plays in the etiology of neurodegeneration is needed, along with the identification of dietary interventions that may lead to improved therapeutic strategies for both the treatment and prevention of neurodegenerative disorders. Therefore, this review presents a comprehensive summary of the role of ROS in the pathogenesis of neurodegenerative disorders. In addition, nutrients believed to be useful for mitigating and counteracting ROS are discussed.

Article Details

Madireddy, S., & Madireddy, S. (2019). Protection from the Pathogenesis of Neurodegenerative Disorders, including Alzheimer’s Disease, Amyotrophic Lateral Sclerosis, Huntington’s Disease, and Parkinson’s Diseases, through the Mitigation of Reactive Oxygen Species. Journal of Neuroscience and Neurological Disorders, 3(2), 148–161. https://doi.org/10.29328/journal.jnnd.1001026
Review Articles

Copyright (c) 2019 Madireddy S, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Kim GH, Kim JE, Rhie SJ, Yoon S. The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol. 2015; 24: 325-340. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26713080

Salim S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther. 2017; 360: 201-205. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27754930

G, Petrosillo G, Paradies V, Ruggiero FM. Mitochondrial dysfunction in brain aging: Role of oxidative stress and cardiolipin. Neurochem Int. 2011; 58: 447-457. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21215780

Hassan W, Silva CEB, Mohammadzai IU, da Rocha JBT, Landeira-Fernandez J. Association of oxidative stress to the genesis of anxiety: Implications for possible therapeutic interventions. Curr Neuropharmacol. 2014; 12: 120-139. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24669207

Liu Z, Ren Z, Zhang J, Chuang CC, Kandaswamy E, et al. Role of ROS and nutritional antioxidants in human diseases. Front Physiol. 2018; 9: 477. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29867535

Newsholme P, Cruzat VF, Keane KN, Carlessi R, de Bittencourt PIH. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J. 2016; 473: 4527-4550. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27941030

Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, et al. Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev. 2017; 2017: 8416763. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28819546

Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012; 5: 9-19. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23268465

Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012; 2012: 217037. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27269705

Collin F, Cheignon C, Hureau C. Oxidative stress as a biomarker for Alzheimer’s disease. Biomarkers in Med. 2018; 12: 201-203. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29436240

Feng Ye, Wang X. Antioxidant therapies for Alzheimer's disease. Oxid Med Cell Longev. 2012; 2012: 472932. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22888398

Oliver DMA, Hemachandra Reddy P. Small molecules as therapeutic drugs for Alzheimer's disease. Mol Cell Neurosci. 2019; 96: 47-62. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30877034

Panahi Y, Rajaee SM, Johnston TP, Sahebkar A. Neuroprotective effects of antioxidants in the management of neurodegenerative disorders: A literature review. J Cell Biochem. 2019; 120: 2742-2748. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29219206

Bjorklund G, Chirumbolo S. Role of oxidative stress and antioxidants in daily nutrition and human health. Nutrition. 2017; 33: 311-321. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27746034

Basambombo LL. Carmichael PH, Cote S, Laurin D. Use of vitamin E and C supplements for the prevention of cognitive decline. Ann Pharmacother. 2017; 51: 118-124. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27708183

Visioli F, Burgos-Ramos E. Selected micronutrients in cognitive decline prevention and therapy. Mol Neurobiol. 2016; 53: 4083-4093. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26198569

Sisein EA. Biochemistry of free radicals and antioxidants. Acad J Biosci. 2014; 2: 110-118.

Poljsak B, Dušan Š, Milisav I. Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. Oxid Med Cell Longev. 2013; 2013: 956792. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23738047

Collin F. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int J Mol Sci. 2019; 20: 2407. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31096608

Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules. 2019; 24. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31013638

Kawamura T, Muraoka I. Exercise-induced oxidative stress and the effects of antioxidant intake from a physiological viewpoint. Antioxidants. 2018; 7: 119. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30189660

Johri A, Beal MF. Antioxidants in Huntington’s disease. Biochim Biophys Acta. 2012; 1822: 664-674. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22138129

Kovacic P, Pozos RS, Somanathan R, Shangari N, O'Brien PJ. Mechanism of mitochondrial uncouplers, inhibitors, and toxins: Focus on electron transfer, free radicals, and structure-activity relationships. Curr Med Chem. 2005; 12: 2601-2623. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16248817

Chouchani ET, Pell VR, James A, Work LM, Saeb-Parsy K, et al. A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury. Cell Metab. 2016; 23: 254-263. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26777689

Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, et al. Oxidative stress, prooxidants, and antioxidants: The interplay. BioMed Res Int. 2014; 2014: 761264. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24587990

Buico A, Cassino C, Ravera M, Betta P, Osella D. Oxidative stress and total antioxidant capacity in human plasma. Redox Report: Communications in Free Radical Research. 2009; 14: 125-131.

Cui H, Kong Y, Zhang H. Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduction. 2012; 2012: 646354.

Jezek J, Cooper KF, Strich R. Reactive oxygen species and mitochondrial dynamics: The yin and yang of mitochondrial dysfunction and cancer progression. Antioxidants (Basel). 2018; 7: 13. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29337889

Zhou L, Zhang Q, Zhang P, Sun L, Peng C, et al. c-Abl-mediated Drp1 phosphorylation promotes oxidative stress-induced mitochondrial fragmentation and neuronal cell death. Cell Death Dis. 2017; 8: e3117. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29022905

Mehta V, Desai N, Perwez A, Nemade D, Dawoodi S, et al. ACE Alzheimer’s: The role of vitamin A, C and E (ACE) in oxidative stress induced Alzheimer’s disease. J Med Res Innov. 2018; 2.

Butterfield DA, Kanski J. Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mech Ageing Dev. 2001; 122: 945-962. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11348660

Forni C, Facchiano F, Bartoli M, Pieretti S, Facchiano A, et al. Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Res Int. 2019; 2019: 8748253. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31080832

Tiwari SC, Soni RM. Alzheimer’s disease pathology and oxidative stress: Possible therapeutic options. J Alzheimers Dis Parkinsonism. 2014; 4.

de Mello AH, Costa AB, Engel JDG, Rezin GT. Mitochondrial dysfunction in obesity. Life Sci. 2018; 192: 26-32. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29155300

Jha SK, Jha NK, Kumar D, Ambasta RK, Kumar P. Linking mitochondrial dysfunction, metabolic syndrome and stress signaling in Neurodegeneration. Molecular Basis of Disease. 2017; 1863: 1132-1146. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27345267

Juarez Olguín H, Calderon Guzman D, Hernandez García E, Barragan Mejía G. The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxid Med Cell Longev. 2016; 2016: 9730467. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26770661

Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, et al. Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci. 2012; 322: 254-262. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22669122

Song P, Zou MH. Roles of reactive oxygen species in physiology and pathology. In: Wang H, Patterson C, editors. Atherosclerosis: Risks, Mechanisms, and Therapies. Hoboken, NJ: John Wiley & Sons Inc. 2015; 379-392.

Carocci A, Catalano A, Sinicropi MS, Genchi G. Oxidative stress and neurodegeneration: The involvement of iron. BioMetals. 2018; 31: 715-735. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30014355

Essa MM, Moghadas M, Ba-Omar T, Qoronfleh MW, Guillemin GJ, et al. Protective effects of antioxidants in Huntington’s disease: An extensive review. Neurotox Res. 2019; 35: 739-774. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30632085

Tan SH, Karri V, Tay NWR, Chang KH, Ah HY, et al. Emerging pathways to neurodegeneration: Dissecting the critical molecular mechanisms in Alzheimer’s disease, Parkinson’s disease. Biomed Pharmacother. 2019; 111: 765-777. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30612001

Manivasagam T, Thenmozhi, AJ, Bharathi MD, Sumathi T, Saravanababu C, et al. Polyphenols and Huntington's disease. Food for Huntington's Disease. Nova Science Publishers, 2018; 39-62.

Teixeira J, Chavarria D, Borges F, Wojtczak L, Wieckowski M, et al. Dietary polyphenols and mitochondrial function: Role in health and disease. Curr Med Chem. 2019; 26: 3376-3407. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28554320

Sbodio JI, Snyder SH, Paul BD. Redox mechanisms in neurodegeneration: From disease outcomes to therapeutic opportunities. Antioxid Redox Signaling. 2019; 30: 1450-1499. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29634350

Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci. 2019; 20: 148-160. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30737462

Kumar K, Kumar A, Keegan RK, Deshmukh R. Recent advances in the neurobiology and neuropharmacology of Alzheimer’s disease. Biomed Pharmacother. 2018; 98: 297-307. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29274586

Bashir H. Emerging therapies in Huntington’s disease, Expert Rev Neurother. 2019; 1-13.

Zhou J, Li A, Jun Li X, Yi J. Dysregulated mitochondrial Ca2+ and ROS signaling in skeletal muscle of ALS mouse model. Arch Biochem Biophys. 2019a; 663: 249-258. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30682329

Mangrulkar S, Chaple DR. Pharmacological assessments of polyphenolic extract of cymbopogon citratus leaves in rodent model of Parkinson’s disease. J Drug Delivery Ther. 2019; 9: 311-315.

Pajarillo E, Rizor, A, Lee J, Aschner M, Lee E. The role of posttranslational modifications of alpha-synuclein and LRRK2 in Parkinson’s disease: Potential contributions of environmental factors. Biochim BiophysActa Mol Basis Dis. 2019; 1865: 1992-2000. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30481588

Escher CM, Sannemann L, Jessen F. Stress and Alzheimer’s disease. J Neural Transm. 2019; 126: 1155-1161. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30788601

Liu Y, Nguyen M, Robert A, Meunier B. Metal ions in Alzheimer’s disease: A key role or not? Acc Chem Res. 2019; 52: 2026-2035. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31274278

Timmers M, Tesseur I, Bogert J, Zetterberg H, Blennow K, et al. Relevance of the interplay between amyloid and tau for cognitive impairment in early Alzheimer's disease. Neurobiol Aging. 2019; 79: 131-141. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31055223

Tublin JM, Adelstein JM, del Monte F, Combs CK, Wold LE. Getting to the heart of Alzheimer disease. Circ Res. 2019; 124: 142-149. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30605407

Gao Y, Tan L, Yu JT, Tan L. Tau in Alzheimer's disease: Mechanisms and therapeutic strategies. Curr Alzheimer Res. 2018; 15: 283-300. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28413986

Ozben T, Ozben S. Neuro-inflammation and anti-inflammatory treatment options for Alzheimer's disease. Clin Biochem. 2019; 72: 87-89. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30954437

Sun B, Li W, Zhu C. Clinical research on Alzheimer’s disease: Progress and perspectives. Neurosci Bull. 2018; 34: 1111-1118. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29956105

Liddelow SA. Modern approaches to investigating non-neuronal aspects of Alzheimer's disease. FASEB J. 2019; 33: 1528-1535. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30703873

Henstridge CM, Hyman BT, Spires-Jones TL. Beyond the neuron-cellular interactions early in Alzheimer disease pathogenesis. Nat Rev Neurosci. 2019; 20: 94-108. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30643230

Alzoubi KH, Hasan ZA, Khabour OF, Mayyas FA, Al Yacoub ON, et al. The effect of high-fat diet on seizure threshold in rats: Role of oxidative stress. Physiol Behav. 2018; 196: 1-7. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30149086

Morzelle MC, Salgado JM, Massarioli AP, Bachiega P, De Oliveira Rios A, et al. Potential benefits of phenolics from pomegranate pulp and peel in Alzheimer’s disease: Antioxidant activity and inhibition of acetylcholinesterase. J Food Bioact. 2019; 5: 136-141.

Grundman M. Tau based therapeutics: Alternative approaches in the war on Alzheimer’s disease. J Prev Alz Dis. 2019; 6: 151-152. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31062822

Busche MA, Wegmann S, Dujardin S, Commins C, Schiantarelli J, et al. Tau impairs neural circuits, dominating amyloid-β effects, in Alzheimer models in vivo. Nat Neurosci. 2019; 22: 57-64. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30559471

Perez Ortiz JM, Swerdlow RH. Mitochondrial dysfunction in Alzheimer's disease: Role in pathogenesis and novel therapeutic opportunities. Br J Pharmacol. 2019; 176: 3489-3507. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30675901

Nakabeppu Y. Molecular pathophysiology of insulin depletion, mitochondrial dysfunction, and oxidative stress in Alzheimer’s disease brain. Adv Exp Med Biol. 2019; 1128:27-44. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31062324

Wee M, Chegini F, Power JHT, Majd S. Tau positive neurons show marked mitochondrial loss and nuclear degradation in Alzheimer's disease. Curr Alzheimer Res. 2018; 15: 928-937. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29895248

Martins RN, Villemagne V, Sohrabi HR, Chatterjee P, Shah T, et al. Alzheimer’s disease: A journey from amyloid peptides and oxidative stress, to biomarker technologies and disease prevention strategies - gains from AIBL and DIAN cohort studies. J Alzheimers Dis. 2018; 62: 965-992. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29562546

Zetterberg H, Schott JM. Biomarkers for Alzheimer’s disease beyond amyloid and tau. Nat Med. 2019; 25: 201-203. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30728536

Bennett RE, De Vos SL, Dujardin S, Corjuc B, Gor R, et al. Enhanced tau aggregation in the presence of amyloid β. Am J Pathol. 2017; 187: 1601-1612. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28500862

Lim YY, Maruff P, Pietrzak RH, Ames D, Ellis KA, et al. Effect of amyloid on memory and non-memory decline from preclinical to clinical Alzheimer’s disease. Brain. 2014; 137: 221-231. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24176981

Flannery PJ, Trushina E. Mitochondrial dynamics and transport in Alzheimer's disease. Mol Cell Neurosci. 2019; 98: 109-120. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31216425

Mosconi L. Effect of diet on hippocampal volume in a population at risk for Alzheimer’s disease. Integrative Medicine Alert Atlanta. 2019; 22.

Power R, Prado-Cabrero A, Mulcahy R, Howard A, Nolan JM. The role of nutrition for the aging population: Implications for cognition and Alzheimer's disease. Annu Rev Food Sci Technol. 2019; 10: 619-639. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30908950

Cao L, Tan L, Wang HF, Jiang T, Zhu X, et al. Dietary patterns and risk of dementia: A systematic review and meta-analysis of cohort studies. Mol Neurobiol. 2016; 53: 6144-6154. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26553347

Grimm MOW, Mett J, Hartmann T. The impact of vitamin E and other fat-soluble vitamins on Alzheimer’s disease. Int J Mol Sci. 2016; 17: 1785. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27792188

Niki E. Antioxidants: Basic principles, emerging concepts, and problems. Biomed J. 2014; 37: 106-111. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24923567

Thapa A, Carroll NJ. Dietary modulation of oxidative stress in Alzheimer’s disease. Int J Mol Sci. 2017; 18: 1583. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28753984

Karantzoulis S, Galvin JE. Distinguishing Alzheimer'’s disease from other major forms of dementia. Expert Rev Neurother. 2011; 11: 1579-1591. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/3729743

Schirinzi T, Martella G, Imbriani P, Lazzaro GD, Franco D, et al. Dietary vitamin E as a protective factor for Parkinson's disease: Clinical and experimental evidence. Front Neurol. 2019; 10: 148. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30863359

Annweiler C, Rolland Y, Schott AM, Blain H, Vellas B, et al. Higher vitamin D dietary intake is associated with lower risk of Alzheimer’s disease: A 7-year follow-up. J Gerontol, Ser A. 2012; 67: 1205-1211. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22503994

Harrison FE. A critical review of vitamin C for the prevention of age-related cognitive decline and Alzheimer’s disease. J Alzheimers Dis. 2012; 29: 711-726. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22366772

Zandi PP, Anthony JC, Khachaturian AS. Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: The cache county study. Arch Neurol. 2004; 61: 82-88. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14732624

Weber P, Birringer M, Blumberg J, Eggersdorfer M, Frank J. Humana Press, Cham. Vitamin E in Human Health. Nutrition and Health. 2019; 325-344.

Dong S, Huang X, Zhen J, Halm-Lutterodt NV, Wang J, et al. Dietary vitamin E status dictates oxidative stress outcomes by modulating effects of fish oil supplementation in Alzheimer disease model APPswe/PS1dE9 mice. Mol Neurobiol. 2018; 55: 9204-9219. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29656360

Ulatowski LM, Manor D. Vitamin E and neurodegeneration. Neurobiol Dis. 2015; 84: 78-83. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25913028

Dong Y, Chen X, Liu Y, Shu Y, Chen T, et al. Do low-serum vitamin E levels increase the risk of Alzheimer disease in older people? Evidence from a meta-analysis of case-control studies. Int J Geriatr Psychiatry. 2018; 33: 257-263. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28833475

Berti V, Murray J, Davies M, Spector N, Tsui WH, et al. Nutrient patterns and brain biomarkers of Alzheimer’s disease in cognitively normal individuals. J Nutr Health Aging. 2015; 19: 413-423. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25809805

de Lau LML, Koudstaal PJ, Witteman JCM, Hofman A, Breteler MMB, et al. Dietary folate, vitamin B12, and vitamin B6 and the risk of Parkinson disease. Neurology. 2006; 67: 315-318. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16864826

Mitchell ES, Conus N, Kaput J. B vitamin polymorphisms and behavior: Evidence of associations with neurodevelopment, depression, schizophrenia, bipolar disorder and cognitive decline. Neurosci Biobehav Rev. 2014; 47: 307-320. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25173634

Van de Lagemaat EE, de Groot LCPGM, van den Heuvel EGHM. Vitamin B12 in relation to oxidative stress: A systematic review. Nutrients. 2019; 11: 482. PubMed; https://www.ncbi.nlm.nih.gov/pubmed/30823595

Celik E, Sanlier N. Effects of nutrient and bioactive food components on Alzheimer's disease and epigenetic. Crit Rev Food Sci Nutr. 2019; 59: 102-113. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28799782

Hernando S, Requejo C, Herran E, Ruiz-Ortegade JA, Morera-Herrerase T, et al. Beneficial effects of n-3 polyunsaturated fatty acids administration in a partial lesion model of Parkinson's disease: The role of glia and NRf2 regulation. Neurobiol Dis. 2019; 121: 252-262. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30296616

Moloney M. The role of Omega-3 fatty acids in the prevention of Alzheimer's disease in the early stages of disease presentation. J Australian Traditional-Medicine Society. 2019; 25: 90-95.

Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, et al. Dietary fats and the risk of incident Alzheimer disease. Arch Neurol. 2003; 60:194-200. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12580703

Ataie A, Shadifar M, Ataee R. Polyphenolic antioxidants and neuronal regeneration. Basic Clin Neurosci. 2016; 7: 81-90. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27303602

Gaudreault R, Mousseau N. Mitigating Alzheimer's disease by natural polyphenols: A review. Curr Alzheimer Res. 2019; 16: 529-543. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30873922

Kostic AZ, Milincic DD, Gasic UM, Nedic N, Stanojevic S, et al. Polyphenolic profile and antioxidant properties of bee-collected pollen from sunflower (Helianthus annuus L.) plant. LWT. 2019; 112.

Madireddy S, Madireddy S. The role of diet in maintaining strong brain health by taking the advantage of the gut-brain axis. J Food Nutr Res. 2019; 7: 41-50.

U.S. Department of Agriculture, Agricultural Research Service. USDA Food Composition Databases. 2018.

Farkhondeh T, Samarghandian S. Pourbagher‐Shahri AM, Sedaghat M. The impact of curcumin and its modified formulations on Alzheimer's disease. J Cell Physiol. 2019; 234: 16953-16965. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30847942

Lakey-Beitia J, Berrocal R, Rao KS, Durant AA. Polyphenols as therapeutic molecules in Alzheimer’s disease through modulating amyloid pathways. Mol Neurobiol. 2015; 51: 466-479. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24826916

Solanki I, Parihar P, Mansuri ML, Parihar MS. Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv Nutr. 2015; 6: 64-72. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25593144

Gorji N, Moeini R, Memariani Z. Almond, hazelnut and walnut, three nuts for neuroprotection in Alzheimer's disease: A neuropharmacological review of their bioactive constituents. Pharmacol Res. 2017; 129: 115-127. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29208493

Kieburtz K, Reilmann R, Olanow CW. Huntington's disease: Current and future therapeutic prospects. Mov Disord. 2018; 33: 1033-1041. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29737569

Patassini S, Begley1 P, Xu J, Church SJ, Kureishy N. Cerebral vitamin B5 (D-Pantothenic Acid) deficiency as a potential cause of metabolic perturbation and neurodegeneration in Huntington’s disease. Metabolites. 2019; 9: 113. PubMed:https://www.ncbi.nlm.nih.gov/pubmed/31212603

Tobore TO. Towards a comprehensive understanding of the contributions of mitochondrial dysfunction and oxidative stress in the pathogenesis and pathophysiology of Huntington's disease. J Neurosci Res. 2019; 97: 1455-1468. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31304621

Carmo C, Naia L, Lopes C, Rego AC. Mitochondrial Dysfunction in Huntington’s disease. Adv Exp Med Biol. 2018; 1049: 59-83. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29427098

Khan F, Garg VK, Singh AK, Kumar T. Role of free radicals and certain antioxidants in the management of Huntington’s disease: A review. J Anal Pharm Res. 2018; 7: 386-392.

An P, Sun X. Huntington’s disease: Current status and prospects. J Cell Signal. 2019; 4: 199.

Denis HL, Lamontagne-proulx, J, St-Amour, I, Mason S, Rowley J, et al. Platelet abnormalities in Huntington’s disease. J Neurol Neurosurg Psychiatry. 2019; 90: 272-283. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30567722

Bates GP, Dorsey R, Gusella, JF, Hayden MR, Kay C, et al. Huntington disease. Nat Rev Dis Primers. 2015; 1: 15005. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27228260

McColgan P, Tabrizi SJ. Huntington’s disease: A clinical review. Eur J Neurol. 2018; 25: 24-34. PubMed:https://www.ncbi.nlm.nih.gov/pubmed/28817209

Biagioli M, Ferrari F, Mendenhall EM, Zhang Y, Erdin S, et al. Htt CAG repeat expansion confers pleiotropic gains of mutant Huntingtin function in chromatin regulation. Hum Mol Genet. 2015. 24: 2442-2457. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25574027

Mi Y, Gao X, Xu H, Cui Y, Zhang Y, et al. The Emerging roles of ferroptosis in Huntington’s disease. NeuroMol Med. 2019; 21: 110-119. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30600476

Drombosky KW, Rode S, Kodali R, Jacob TC, Palladino MJ, et al. Mutational analysis implicates the amyloid fibril as the toxic entity in Huntington's disease. Neurobiol Dis. 2018; 120: 126-138. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30171891

Mason SL, Daws RE, Soreq E, Johnson EB, Scahill RI, et al. Predicting clinical diagnosis in Huntington's disease: An imaging polymarker. Ann Neurol. 2018; 83: 532-543. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29405351

Shacham T, Sharma N, Lederkremer GZ. Protein misfolding and ER stress in Huntington's disease. Front Mol Biosci. 2019; 6: 20. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31001537

Gaura V, Lavisse S, Payoux P, Goldman S, Verny C, et al. Association between motor symptoms and brain metabolism in early Huntington disease. JAMA Neurol. 2017; 74: 1088-1096. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28672395

Byrne LM, Rodrigues FB. Johnson EB, Wijeratne PA, Vita ED, et al. Evaluation of mutant huntingtin and neurofilament proteins as potential markers in Huntington’s disease. Sci Transl Med. 2018; 10: 7108. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30209243

Tippett LJ, Waldvogel HJ, Snell RG, Vonsattel JP, Young AB, et al. The complexity of clinical Huntington’s disease: Developments in molecular genetics, neuropathology and neuroimaging biomarkers. Adv Neurobiol. 2017; 15: 129-161. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28674980

Santa-Cruz LD, Tapia R. Role of energy metabolic deficits and oxidative stress in excitotoxic spinal motor neuron degeneration in vivo. ASN Neuro. 2014; 6: 00138. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24524836

Massey T, McAllister B, Jones L. Methods for assessing DNA repair and repeat expansion in Huntington’s disease. Methods in Molecular Biology. 2018; 1780: 483-495. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29856032

Balakrishnan R, Manivasagam T, Justin Thenmozhi A, Essa MM, Elangovan N. Spices and Huntington's disease. In Food for Huntington's Disease. 2018; 87-104.

Zheng J, Winderickx J, Franssens V, Liu B. A mitochondria-associated oxidative stress perspective on Huntington’s disease. Front Mol Neurosci. 2018; 11: 329. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30283298

Wang J, Pfleger C, Friedman L, Vittorino R, Zhao W, et al. Potential application of grape derived polyphenols in Huntington’s disease. Transl Neurosci. 2010; 1: 95-100. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21331299

Tasset I, Pontes AJ, Hinojosa AJ, de la Torre R, Túnez I. Olive oil reduces oxidative damage in a 3-nitropropionic acid-induced Huntington's disease-like rat model. Nutr Neurosci. 2011; 14: 106-111. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21756531

Carito V, Ceccanti M, Tarani L, Ferraguti G, Chaldakov GN, et al. Neurotrophins' modulation by olive polyphenols. Curr Med Chem. 2016; 23: 3189-3197. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27356540

Denny Joseph KM, Muralidhara. Combined oral supplementation of fish oil and quercetin enhances neuroprotection in a chronic rotenone rat model: Relevance to Parkinson’s disease. Neurochem Res. 2015; 40: 894-905. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25687767

Ehrnhoefer DE, Duennwald M, Markovic P, Wacker JL, Engemann S, et al. Green tea (-)-epigallocatechin-gallate modulates early events in Huntingtin misfolding and reduces toxicity in Huntington's disease models. Hum Mol Genet. 2006; 15: 2743-2751. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16893904

Fu J, Jin J, Cichewicz RH, Hageman SA, Ellis TK, et al. Trans-(-)-ε-viniferin increases mitochondrial sirtuin 3 (SIRT3), activates AMP-activated protein kinase (AMPK), and protects cells in models of Huntington disease. J Biol Chem. 2012; 287: 24460–24472. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22648412

Aarsland D, Creese B, Politis M, Chaudhuri KR, Ffytche DH, et al. Cognitive decline in Parkinson disease. Nat Rev Neurol. 2017; 13: 217-231. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28257128

Jain KK. Neuroprotection in Parkinson disease. In: The Handbook of Neuroprotection. Humana, New York, NY. 2019.

Elgayar SAM, Abdel-Hafez AAM, Gomaa AMS, Elsherif R. Vulnerability of glia and vessels of rat substantia nigra in rotenone Parkinson model. Ultrastruct Pathol. 2018; 42: 181-192. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29466086

Makletsova MG, Syatkin SP, Poleshchuk VV, Urazgildeeva GR, Chigaleychik LA, et al. Polyamines in Parkinson’s disease: Their role in oxidative stress induction and protein aggregation. J Neurol Res. 2019; 9: 1-7.

Mhyre TR, Boyd JT, Hamill RW, Maguire-Zeiss K. Parkinson’s Disease. Subcellular Biochemistry. 2012; 65: 389-455. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23225012

Poewe W, Seppi K, Tanner CM. Parkinson disease. Nat Rev Dis Primers. 2017; 3: 17013. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28332488

Vivekanantham S, Shah S, Dewji R, Khatri C, Ologunde R, et al. Neuroinflammation in Parkinson's disease: Role in neurodegeneration and tissue repair. Int J Neurosci. 2015; 125: 717-725. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25364880

Gelders G, Baekelandt V, van der Perren A. Linking neuroinflammation and neurodegeneration in Parkinson’s disease. J Immunol Res. 2018; 2018: 4784268. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29850629

Hassanzadeh K, Rahimmi A. Oxidative stress and neuroinflammation in the story of Parkinson’s disease: Could targeting these pathways write a good ending? J Cell Physiol. 2018; 234: 23-32. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30078201

Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s disease. J Parkinson’s Dis. 2013; 3: 461-491. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24252804

Zhang S, Wang R, Wang G. Impact of dopamine oxidation on dopaminergic neurodegeneration. ACS Chem Neurosci. 2019; 10: 945-953. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30592597

Nobili A, Latagliata EC, Viscomi MT. Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease. Nat Commun. 2017; 8: 14727. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28367951

Youssef SB, Brisson G, Doucet-Beaupre H, Castonguay A-M, Gora C, et al. Neuroprotective benefits of grape seed and skin extract in a mouse model of Parkinson’s disease. Nutr Neurosci. 2019; 1-15. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31131731

Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR. Oxidative stress and Parkinson’s disease. Front Neuroanat. 2015; 9: 91. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26217195

Bose A, Beal MF. Mitochondrial dysfunction in Parkinson’s disease. J Neurochem. 2016; 139: 216-231. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27546335

Pamphlett R. Uptake of environmental toxicants by the locus ceruleus: A potential trigger for neurodegenerative, demyelinating and psychiatric disorders. Med Hypotheses. 2014; 82: 97-104. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24315447

Rizor A, Pajarillo E, Johnson J, Aschner M, Lee E. Astrocytic oxidative/nitrosative stress contributes to Parkinson’s disease pathogenesis: The dual role of reactive astrocytes. Antioxidants. 2019; 8: 265. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31374936

Anh HM, Linh DM, Dung VM, Thao DTP. Evaluating dose- and time-dependent effects of vitamin C treatment on a Parkinson’s disease fly model. Parkinson’s Dis. 2019; 2019: 9720546. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30719278

Hemmati-Dinarvand M, Saedi S, Valilo M, Kalantary-Charvadeh A, Sani MA, et al. Oxidative stress and Parkinson’s disease: Conflict of oxidant-antioxidant systems. Neurosci Lett. 2019; 709: 134296. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31153970

Monzani E, Nicolis S, Dell'Acqua S, Capucciati A, Bacchella C, et al. Dopamine, oxidative stress and protein-quinone modifications in Parkinson's and other neurodegenerative diseases. Angewandte Chemie International Edition. 2018; 58: 6512-6527. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30536578

Yan MH, Wang X, Zhu X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic Biol Med. 2013; 62: 90-101. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23200807

Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, et al. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases: A mechanistic insight. Biomed Pharmacother. 2015; 74: 101-110. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26349970

Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res. 2016; 39: 73-82. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27809706

Kumar H, Lim HW, More SV, Kim BW, Koppula S, et al. The role of free radicals in the aging brain and Parkinson's disease: Convergence and parallelism. Int J Mol Sci. 2012; 13: 10478-10504. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22949875

Ares‐Santos SN, Granado N, Moratalla R. The role of dopamine receptors in the neurotoxicity of methamphetamine. J Intern Med. 2013; 273. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23600399

Wei Z, Li X, Li X, Liu Q, Cheng Y. Oxidative stress in Parkinson's disease: A systematic review and meta-analysis. Front Mol Neurosci. 2018; 11: 236. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30026688

Sechi G, Sechi E, Fois C, Kumar N. Advances in clinical determinants and neurological manifestations of B vitamin deficiency in adults. Nutr Rev. 2016; 74: 281-300. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27034475

Ticinesi A, Meschi T, Lauretani F, Felis G, Franchi F, et al. Nutrition and inflammation in older individuals: Focus on vitamin D, n-3 polyunsaturated fatty acids and whey proteins. Nutrients. 2016; 8: 186. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27043616

Yeshokumar AK, Saylor D, Kornberg MD, Mowry EM. Evidence for the importance of vitamin D status in neurologic conditions. Curr Treat Options Neurol. 2015; 17: 51. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26538263

Mischley LC, Lau RC, Bennett RD. Role of diet and nutritional supplements in Parkinson’s disease progression. Oxid Med Cell Longev. 2017; 2017: 6405278. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29081890

Zhen C, Li D, Wang H, Wang P, Zhang W, et al. Tea consumption and risk of Parkinson's disease: A meta-analysis. Neurology Asia. 2019; 24: 31-40.

Dietiker C, Kim S, Zhang Y, Christine CW. Characterization of vitamin B12 supplementation and correlation with clinical outcomes in a large longitudinal study of early Parkinson’s disease. J Mov Disord. 2019; 12: 91-96. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31158942

McCarter SJ, Teigen LM, McCarter AR, Benarroch EE, St Louis EK, et al. Low vitamin B12 and Parkinson disease: Potential link to reduced cholinergic transmission and severity of disease. Mayo Clin Proc. 2019; 94: 757-762. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31054604

Shen L. Associations between B vitamins and Parkinson’s disease. Nutrients. 2015; 7: 7197-7208. PubMed:https://www.ncbi.nlm.nih.gov/pubmed/26343714

Zhao X, Zhang M, Li C, Jiang X, Su Y, et al. Benefits of vitamins in the treatment of Parkinson’s disease. Oxid Med Cell Longev. 2019; 2019: 9426867. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30915197

Heo HJ, Lee CY. Protective effects of quercetin and vitamin C against oxidative stress-induced neurodegeneration. J Agric Food Chem. 2004; 52: 7514-7517. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15675797

Popovic LM, Mitic NR, Miric D, Miric D, Bisevac B, et al. Influence of vitamin C supplementation on oxidative stress and neutrophil inflammatory response in acute and regular exercise. Oxid Med Cell Longev. 2015; 2015: 295497. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25802681

Hughes KC, Gao X, Kim IY, Rimm E, Wang M, et al. Intake of antioxidant vitamins and risk of Parkinson’s disease. Mov Disord. 2016; 31: 1909-1914. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27787934

Luo X, Ou R, Dutta R, Tian Y, Xiong H, et al. Association between serum vitamin D levels and Parkinson's disease: A systematic review and meta-analysis. Front Neurol. 2018; 9: 909. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30483205

Ross GW, Petrovitch H, Abbott RD. Serum vitamin D and risk of Parkinson's disease. Mov Disord. 2016; 31: 933-935. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27091700

Soliman RH, Oraby MI, Hussein M, El-Shafy SA, Mostafa S. Could vitamin D deficiency have an impact on motor and cognitive function in Parkinson’s disease? Egypt J Neurol Psychiatr Neurosurg. 2019; 55: 34.

Wang L, Evatt ML, Maldonado LG, Perry WR, Ritchie JC, et al. Vitamin D from different sources is inversely associated with Parkinson disease. Mov Disord. 2015; 30: 560-566. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25545356

Zhou Z, Zhou R, Zhang Z, Li K. The Association between vitamin D status, vitamin D supplementation, sunlight exposure, and Parkinson’s disease: A systematic review and meta-analysis. Med Sci Monit. 2019b; 25: 666-674. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30672512

Lv Z, Qi H, Wang L, Fan X, Han F, et al. Vitamin D status and Parkinson's disease: A systematic review and meta-analysis. Neurol Sci. 2014; 35:1723-1730. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24847960

Taghizadeh M, Tamtaji OR, Dadgostar E, Kakhaki RD, Bahmani F, et al. The effects of omega-3 fatty acids and vitamin E co-supplementation on clinical and metabolic status in patients with Parkinson's disease: A randomized, double-blind, placebo-controlled trial. Neurochem Int. 2017; 108: 183-189. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28342967

Filograna R, Beltramini M, Bubacco L, Bisaglia M. Anti-oxidants in Parkinson’s disease therapy: A critical point of view. Curr Neuropharmacol. 2016; 14: 260-271. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26517052

Trotta E, Bortolotti S, Fugazzotto G, Gellera C, Montagnese S, et al. Familial vitamin E deficiency: Multiorgan complications support the adverse role of oxidative stress. Nutrition. 2019; 63-64: 57-60. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30933726

Fahn S. A pilot trial of high-dose alpha-tocopherol and ascorbate in early Parkinson’s disease. Ann Neurol. 1992; 32: 128–132. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/1510371

Bazan NG. Docosanoids and elovanoids from omega-3 fatty acids are pro-homeostatic modulators of inflammatory responses, cell damage and neuroprotection. Mol Aspects Med. 2018; 64:18-33. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30244005

De Lau LM, Bornebroek M, Witteman JC, Hofman A, Koudstaal PJ, et al. Dietary fatty acids and the risk of Parkinson disease: The Rotterdam study. Neurology. 2005; 64: 2040-2045. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15985568

Munusamy U, Abdullah SNA. Vitamin E. Ozturk M., Hakeem K. Springer Cham. Plant and Human Health. 2019; 2.

Zanetti M, Grillo A, Losurdo P, Panizon E, Mearelli F, et al. Omega-3 polyunsaturated fatty acids: Structural and functional effects on the vascular wall. Biomed Res Int. 2015; 2015: 791978. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26301252

Darvesh AS, McClure M, Sadana P, Paxos C, Geldenhuys WJ, et al. Neuroprotective properties of dietary polyphenols in Parkinson's disease. Neuroprotective Effects of Phytochemicals in Neurological Disorders. 2017.

Kujawska M, Jodynis-Liebert J. Polyphenols in Parkinson's disease: A systematic review of in vivo studies. Nutrients. 2018; 10: 642. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29783725

Farzaei MH, Bahramsoltani R, Abbasabadi Z, Braidy N, Nabavi SM. Role of green tea catechins in prevention of age-related cognitive decline: Pharmacological targets and clinical perspective. J Cell Physiol. 2019; 234: 2447-2459. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30187490

Jung UJ, Kim SR. Beneficial effects of flavonoids against Parkinson’s disease. J Med Food. 2018; 21: 421-432. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29412767

Xing L, Zhang H, Qi R, Tsao R, Mine Y. Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. J Agric Food Chem. 2019; 67: 1029-1043. PubMed:https://www.ncbi.nlm.nih.gov/pubmed/30653316

Gao X, Cassidy A, Schwarzschild MA, Rimm EB, Ascherio A. Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology. 2012; 78: 1138-1145. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22491871

Garg SK, Shukla A, Choudhury S. Polyphenols and flavonoids. Nutraceuticals in Veterinary Medicine. 2019.

Sánchez B, Delgado S, Blanco-Miguez A, Lourenço A, Gueimonde M, et al. Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res. 2017; 61: 1600-2240. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27500859

Tamtaji OR, Taghizadeh M, Kakhaki RD, Kouchaki E, Bahmani F, et al. Clinical and metabolic response to probiotic administration in people with Parkinson's disease: A randomized, double-blind, placebo-controlled trial. Clin Nutr. 2018; 38. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29891223

De Aguilar JG. Lipid biomarkers for amyotrophic lateral sclerosis. Front Neurol. 2019; 10: 284. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31019485

Luisetto M, Almukhtar N, Rafa AY, Ahmadabadi BN, Mashori GR, et al. Role of plants, environmental toxins and physical neurotoxicological factors in amyotrophic lateral sclerosis, Alzheimer disease and other neurodegenerative diseases. J Neurosci Neurol Disord. 2019; 3: 001-086.

Nowicka N, Juranek J, Juranek JK, Wojtkiewicz J. Risk factors and emerging therapies in amyotrophic lateral sclerosis. Int J Mol Sci. 2019; 20: 2616. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31141951

Niedermeyer S, Murn M, Choi PJ. Respiratory failure in amyotrophic lateral sclerosis. Recent Advances in Chest Medicine. 2019; 155: 401-408.

Okamoto K. Risk factors in amyotrophic lateral sclerosis. Current Topics in Environmental Health and Preventive Medicine. 2018.

Grossman M. Amyotrophic lateral sclerosis - A multisystem neurodegenerative disorder. Nat Rev Neurol. 2019; 15: 5-6. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30446736

Valko K, Ciesla L. Amyotrophic lateral sclerosis. Prog Med Chem. 2019; 58: 63-117. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30879475

Butti Z, Patten SA. RNA Dysregulation in Amyotrophic Lateral Sclerosis. Front Genet. 2019; 9: 712. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30723494

Trias E, Ibarburu S, Barreto-Nunez R, Babdor J, Maciel TT, et al. Post-paralysis tyrosine kinase inhibition with masitinib abrogates neuroinflammation and slows disease progression in inherited amyotrophic lateral sclerosis. J Neuroinflammation. 2016; 13: 177. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27400786

Beers DR, Appel SH. Immune dysregulation in amyotrophic lateral sclerosis: Mechanisms and emerging therapies. The LANCET Neurology. 2019; 18: 211-220. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30663610

Pansarasa O, Bordoni M, Diamanti L, et al., SOD1 in amyotrophic lateral sclerosis: Ambivalent behavior connected to the disease. Int J Mol Sci. 2018; 19: 1345. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29751510

Blasco H, Garcon G, Patin F, Veyrat-Durebex C, Boyer J, et al. Panel of oxidative stress and inflammatory biomarkers in ALS: A pilot study. Can J Neurol Sci. 2017; 44: 90-95. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27774920

Castanedo-Vazquez D, Bosque-Varela P, Sainz-Pelayo A, Riancho J. Infectious agents and amyotrophic lateral sclerosis: Another piece of the puzzle of motor neuron degeneration. J Neurol. 2019; 266: 27-36. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29845377

Zeldich E, Chen CD, Boden E, Howat B, Nasse JS, et al. Klotho is neuroprotective in the superoxide dismutase (SOD1G93A) mouse model of ALS. J Mol Neurosci. 2019; 69: 264-285. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31250273

Granatiero V, Manfredi G. Mitochondrial transport and turnover in the pathogenesis of amyotrophic lateral sclerosis. Biology, 2019; 8: 36. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31083575

Sasaki S, Iwata M. Mitochondrial alterations in the spinal cord of patients with sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 2007; 66: 10-16. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17204932

Ohta Y, Nomura E, Shang J, Feng T, Huang Y, et al. Enhanced oxidative stress and the treatment by edaravone in mice model of amyotrophic lateral sclerosis. J Neurosci Res. 2018; 97. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30565312

Wang Z, Bai Z, Qin X, Cheng Y. Aberrations in oxidative stress markers in amyotrophic lateral sclerosis: A systematic review and meta-analysis. Oxid Med Cell Longev. 2019; 2019: 1712323. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31281567

Ragagnin AMG, Shadfar S, Vidal M, Jamali MS, Atkin JD. Motor neuron susceptibility in ALS/FTD. Front Neurosci. 2019; 13: 532. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31316328

Smith EF, Shaw PJ, de Vos KJ. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett. 2019; 710: 132933. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28669745

Said Ahmed M, Hung WY, Zu JS, Hockberger PE, Siddique T. Increased reactive oxygen species in familial amyotrophic lateral sclerosis with mutations in SOD1. J Neurol Sci. 2000; 176: 88-94. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10930589

Moretti M, Budni J, Ribeiro CM, Rieger DK, Leal RB, et al. Subchronic administration of ascorbic acid elicits antidepressant-like effect and modulates cell survival signaling pathways in mice. J Nutr Biochem. 2016; 38: 50-56. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27721116

Blasco H, Corcia P, Moreau C, Veau S, Fournier C, et al. 1H-NMR-based metabolomic profiling of CSF in early amyotrophic lateral sclerosis. PLoS ONE. 2010; 5: 13223. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20949041

Nagano S, Fujii Y, Yamamoto T, Taniyama M, Fukada K, et al. The efficacy of trientine or ascorbate alone compared to that of the combined treatment with these two agents in familial amyotrophic lateral sclerosis model mice. Exp Neurol. 2003; 179: 176-180. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12618124

Camu W, Tremblier B, Plassot C, Alphandery S, Salsac C, et al. 2014. Vitamin D confers protection to motoneurons and is a prognostic factor of amyotrophic lateral sclerosis. Neurobiol Aging. 2014; 35: 1198-1205. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24378089

Gianforcaro A, Hamadeh MJ. Vitamin D as a potential therapy in amyotrophic lateral sclerosis. CNS Neurosci Ther. 2014; 20:101-111. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24428861

Veldink JH, Kalmijn S, Groeneveld GJ, Wunderink W, Koster A, et al. Intake of polyunsaturated fatty acids and vitamin E reduces the risk of developing amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2007; 78: 779-779. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16648143

Wang H, O'Reilly EJ, Weisskopf MG, Logroscino G, McCullough ML, et al. Vitamin E intake and risk of amyotrophic lateral sclerosis: A pooled analysis of data from 5 prospective cohort studies. Am J Epidemiol. 2011; 173: 595-602. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21335424

Caragounis A, Price K, Soon CPW, Filiz G, Masters CL, et al. Zinc induces depletion and aggregation of endogenous TDP-43. Free Radical Biol Med. 2010; 48: 1152-1161. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20138212

Urbi B, Owusu MA, Hughes I, Katz M, Broadley S, et al. Effects of cannabinoids in amyotrophic lateral sclerosis (ALS) murine models: A systematic review and meta‐analysis. J Neurochem. 2018; 149. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30520038

Veyrat-Durebex C, Bris C, Codron P, Bocca C, Chupin S, et al. Metabo-lipidomics of fibroblasts and mitochondrial-endoplasmic reticulum extracts from ALS patients shows alterations in purine, pyrimidine, energetic, and phospholipid metabolisms. Mol Neurobiol. 2019; 56: 5780-5791. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30680691

Gonçalves J, Rosado T, Soares S, Simão AY, Caramelo D, et al. Cannabis and its secondary metabolites: Their use as therapeutic drugs, toxicological aspects, and analytical determination. Medicines (Basel). 2019; 6: 31. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30813390