Association of EIF4G1 Gene Variants with Sporadic Parkinson’s disease in a Chinese Han Population
Main Article Content
Abstract
Eukaryotic translation initiation factor 4G1 (eIF4G1) has been implicated in Parkinson’s disease (PD) pathogenesis. However, the contribution of EIF4G1 genetic variation to PD susceptibility remains unclear. To investigate the association between the EIF4G1 variant rs2178403 and PD risk. We analyzed EIF4G1 expression in PD and control samples using public GEO datasets (GSE54536). Additionally, we conducted a hospital-based case-control study with 541 sporadic PD patients and 401 age-/sex-matched healthy controls of Han Chinese ancestry. Genotyping of rs2178403 was performed using Sequenom MassARRAY iPLEX. GEO data revealed a non-significant trend toward elevated EIF4G1 expression in PD samples (p < 0.1). Genetic analysis identified a significant association between the rs2178403 GG genotype and increased PD risk under a recessive model (OR = 1.31, 95% CI = 1.010–1.703, p = 0.042). Stratified analysis showed a stronger effect in females. These findings suggest rs2178403 may contribute to PD susceptibility in the Han Chinese population. This study supports an association between the EIF4G1 variant rs2178403 and PD risk. Further investigation into EIF4G1 inhibition as a potential therapeutic strategy for PD is warranted.
Article Details
Copyright (c) 2025 Li J, et al.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Ye H, Robak LA, Yu M, Cykowski M, Shulman JM. Genetics and pathogenesis of parkinson’s syndrome. Annu Rev Pathol. 2023;18. Available from: https://doi.org/10.1146/annurev-pathmechdis-031521-034145
Tysnes OB, Storstein A. Epidemiology of parkinson’s disease. J Neural Transm (Vienna). 2017;124(8). Available from: https://doi.org/10.1007/s00702-017-1686-y
Haelterman NA, Yoon WH, Sandoval H, Jaiswal M, Shulman JM, Bellen HJ. A mitocentric view of parkinson’s disease. Annu Rev Neurosci. 2014;37. Available from: https://doi.org/10.1146/annurev-neuro-071013-014317
Kalia LV, Lang AE. Parkinson's disease. Lancet. 2015;386(9996). Available from: https://doi.org/10.1016/s0140-6736(14)61393-3
Borsche M, Pereira SL, Klein C, Grünewald A. Mitochondria and parkinson’s disease: clinical, molecular, and translational aspects. J Parkinsons Dis. 2021;11(1). Available from: https://doi.org/10.3233/jpd-201981
Valente EM, Arena G, Torosantucci L, Gelmetti V. Molecular pathways in sporadic PD. Parkinsonism Relat Disord. 2012;18 Suppl 1. Available from: https://doi.org/10.1016/s1353-8020(11)70023-2
Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10). Available from: https://doi.org/10.1038/nbt.1685
Kia DA, Zhang D, Guelfi S, Manzoni C, Hubbard L, Reynolds RH, et al. Identification of candidate parkinson disease genes by integrating genome-wide association study, expression, and epigenetic data sets. JAMA Neurol. 2021;78(4). Available from: https://doi.org/10.1001/jamaneurol.2020.5257
Park JS, Choe K, Lee HJ, Park TJ, Kim MO. Neuroprotective effects of osmotin in parkinson’s disease-associated pathology via the AdipoR1/MAPK/AMPK/mTOR signaling pathways. J Biomed Sci. 2023;30(1). Available from: https://doi.org/10.1186/s12929-023-00961-z
Lan AP, Chen J, Zhao Y, Chai Z, Hu Y. mTOR signaling in parkinson’s disease. Neuromolecular Med. 2017;19(1). Available from: https://doi.org/10.1007/s12017-016-8417-7
Gingras AC, Raught B, Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem. 1999;68:913–63. Available from: https://doi.org/10.1146/annurev.biochem.68.1.913
Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener. 2021;16(1):44. Available from: https://doi.org/10.1186/s13024-021-00428-5
Le Bacquer O, Combe K, Patrac V, Ingram B, Combaret L, Dardevet D, et al. 4E-BP1 and 4E-BP2 double knockout mice are protected from aging-associated sarcopenia. J Cachexia Sarcopenia Muscle. 2019;10(3):696–709. Available from: https://doi.org/10.1002/jcsm.12412
Li K, Tan G, Zhang X, Lu W, Ren J, Si Y, et al. EIF4G1 is a potential prognostic biomarker of breast cancer. Biomolecules. 2022;12(12). Available from: https://doi.org/10.3390/biom12121756
Kim KQ, Nanjaraj Urs AN, Lasehinde V, Greenlaw AC, Hudson BH, Zaher HS. eIF4F complex dynamics are important for the activation of the integrated stress response. Mol Cell. 2024;84(11). Available from: https://doi.org/10.1016/j.molcel.2024.04.016
Lama-Sherpa TD, Jeong MH, Jewell JL. Regulation of mTORC1 by the rag GTPases. Biochem Soc Trans. 2023;51(2). Available from: https://doi.org/10.1042/bst20210038
Kim SH, Choi JH, Marsal-García L, Amiri M, Yanagiya A, Sonenberg N. The mRNA translation initiation factor EIF4G1 controls mitochondrial oxidative phosphorylation, axonal morphogenesis, and memory. Proc Natl Acad Sci U S A. 2023;120(25). Available from: https://doi.org/10.1073/pnas.2300008120
Saini P, Rudakou U, Yu E, Ruskey JA, Asayesh F, Laurent SB, et al. Association study of DNAJC13, UCHL1, HTRA2, GIGYF2, and EIF4G1 with parkinson’s disease. Neurobiol Aging. 2021;100. Available from: https://doi.org/10.1016/j.neurobiolaging.2020.10.019
Yu L, Hu X, Xu R, Zhao Y, Xiong L, Ai J, et al. Piperine promotes PI3K/AKT/mTOR-mediated gut-brain autophagy to degrade α-synuclein in parkinson’s disease rats. J Ethnopharmacol. 2024;322. Available from: https://doi.org/10.1016/j.jep.2023.117628
Lesage S, Condroyer C, Klebe S, Lohmann E, Durif F, Damier P, et al. EIF4G1 in familial parkinson’s disease: pathogenic mutations or rare benign variants? Neurobiol Aging. 2012;33(9). Available from: https://doi.org/10.1016/j.neurobiolaging.2012.05.006
Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55(3). Available from: https://doi.org/10.1136/jnnp.55.3.181
Wang P, Liu X, Ye Z, Gong B, Yang Y, Zhang D, et al. Association of IGF1 gene polymorphism with parkinson’s disease in a Han Chinese population. J Gene Med. 2017;19(4). Available from: https://doi.org/10.3109/13816810.2016.1145699
Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet. 2007;81(5). Available from: https://doi.org/10.1086/521987
Chartier-Harlin MC, Dachsel JC, Vilariño-Güell C, Lincoln SJ, Leprêtre F, et al. Translation initiator EIF4G1 mutations in familial parkinson disease. Am J Hum Genet. 2011;89(3):398–406. Available from: https://doi.org/10.1016/j.ajhg.2011.08.009
Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of parkinson’s disease. Lancet Neurol. 2020;19(2):170–8. Available from: https://doi.org/10.1016/s1474-4422(19)30287-x
Tanner CM, Ostrem JL. Parkinson’s disease. N Engl J Med. 2024;391(5):442–52. Available from: https://doi.org/10.1056/nejmra2401857
Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168(6):960–76. Available from: https://doi.org/10.1016/j.cell.2017.02.004
Deng H, Wu Y, Jankovic J. The EIF4G1 gene and parkinson’s disease. Acta Neurol Scand. 2015;132(2). Available from: https://doi.org/10.1111/ane.12397
Tu L, Liu Z, He X, He Y, Yang H, Jiang Q, et al. Over-expression of eukaryotic translation initiation factor 4 gamma 1 correlates with tumor progression and poor prognosis in nasopharyngeal carcinoma. Mol Cancer. 2010;9:78. Available from: https://doi.org/10.1186/1476-4598-9-78
Silvera D, Arju R, Darvishian F, Levine PH, Zolfaghari L, Goldberg J, et al. Essential role for eIF4GI overexpression in the pathogenesis of inflammatory breast cancer. Nat Cell Biol. 2009;11(7):903–8. Available from: https://doi.org/10.1038/ncb1900
Dhungel N, Eleuteri S, Li LB, Kramer NJ, Chartron JW, Spencer B, et al. Parkinson’s disease genes VPS35 and EIF4G1 interact genetically and converge on α-synuclein. Neuron. 2023;111(1):138. Available from: https://doi.org/10.1016/j.neuron.2022.12.020
Li K, Tang B, Guo J, Lou M, Lv Z, Liu Z, et al. Analysis of EIF4G1 in ethnic Chinese. BMC Neurol. 2013;13:38. Available from: https://doi.org/10.1186/1471-2377-13-38
Zhao Y, Ho P, Prakash KM, Foo JN, Liu JJ, Au WL, et al. Analysis of EIF4G1 in parkinson’s disease among Asians. Neurobiol Aging. 2013;34(4):1311.e5–6. Available from: https://doi.org/10.1016/j.neurobiolaging.2012.09.003
Khurana V, Peng J, Chung CY, Auluck PK, Fanning S, Tardiff DF, et al. Genome-scale networks link neurodegenerative disease genes to α-synuclein through specific molecular pathways. Cell Syst. 2017;4(2):157–70.e14. Available from: https://doi.org/10.1016/j.cels.2016.12.011